Synthesis Of Nucleosides

Helmut Vorbrüggen, Research Laboratories of Schering AG, Berlin, Federal Republic of Germany Carmen Ruh-Pohlenz, Research Laboratories of Schering AG, Berlin, Federal Republic of Germany

1. Introduction

This chapter deals with the synthesis of nucleosides (e.g., the formation of N-glycosides of sugars such as D-ribose or 2-deoxy-D-ribose with heterocyclic nitrogen bases). The methods of nucleoside synthesis have been treated in a number of reviews and monographs. (1-7a)

It is now generally accepted that nucleosides were among the first organic compounds formed at the start of evolution in the early history of our planet earth. To support this point, guanine (1) and adenine (2) were heated with D-ribose (3 or 4) in sea water, which contains the Lewis acid magnesium chloride as catalyst. (8, 9) One thus obtained the nucleosides guanosine (5, ca. 3%) and adenosine (7, 2.3%) together with comparable yields of the unnatural α -nucleosides 6 and 8. The latter were gradually photoanomerized to the thermodynamically more stable 5 and 7 in overall yields of 5–6%. The furanose form of ribose (3) reacts faster than the pyranose form (4).

Corresponding syntheses of the pyrimidine nucleosides uridine (11) and cytidine (12) from uracil (9), cytosine (10) and ribose are more problematic and remain an enigma. The recent conversion of glycolaldehyde-O-phosphate and formaldehyde to ribose-2,4-di-O-phosphate (10) might give new insights into the prebiotic syntheses of 11 and 12. The evidence and hypotheses for these prebiotic conversions and the evolution of RNA, as well as the implications of an "RNA World," have been reviewed. (11-20c)

These RNA nucleosides are reduced in vivo as 5¢-O-diphosphates by ribonucleotide reductases (21-23) to the corresponding 2¢-deoxynucleosides—the building blocks of DNA such as 2¢-deoxy guanosine (see the atom numbering in 5). The thermodynamically controlled synthesis of these four building blocks of RNA (5, 7, 11, and 12) has implications for the design of efficient, high yielding, new methods for the synthesis of the naturally occurring nucleosides, nucleoside antibiotics, (24) and modified nucleosides that may serve as antimetabolites to fight viral and parasitic diseases and cancer.

The nucleoside rings in this chapter are depicted arbitrarily in the anti

conformation, as occurs predominantly in the crystal (25-32) and solution (based primarily on NOE-¹H- and ¹³C-NMR measurements) (33-38) forms of pyrimidine nucleosides. Only a few nucleosides, such as 6-methyluridine, occur with the heterocyclic ring predominantly in the *syn* conformation. (25, 26)

The synthesis of *C*-nucleosides has been reviewed previously (39-44) and is not covered in this review.

2. Scope and Limitations

We describe the synthesis of nucleosides from compounds **13**, in which R^1 and R^2 are carbon or nitrogen moieties that usually form a heterocyclic ring, and sugar derivatives **14**, in which R^4 and R^5 normally form a ring that bears the leaving group Y, to give the nucleoside **15** and R^3Y (**16**).

X = O, S, NCOR^{45a-c}; Y = Cl, Br, F, OAc, OBz, OC(NH)CCl ₃, SOMe, OH; R^3 = H, TMS, Na, Li, HgCl, Ag

2.1. Sugar Moieties

Since we deal in this review with rather few protected sugar derivatives, these are introduced here.

1-O-acetyl-2,3,5-tri-O- 1-chloro-2,3,5-tri-O-

1,2,3,5-tetra-O-acetylβ-D-ribofuranose^{46,47}

furanose48

benzoyl-B-D-ribo-

1a-chloro-3,5-di-O-ptoluoyl-2-deoxyribofuranose51

22 1α-chloro(bromo)-2,3,5tri-O-benzyl-D-arabinofuranose52,53

AcO

1a-bromo-2,3,4,6tetra-O-acetyl-a-Dglucopyranose

3. Nucleoside Synthesis

There are three principal types of nucleoside-forming reactions: (a) The Fusion Reaction, (b) The Metal Salt Procedure, and (c) The Hilbert-Johnson Reaction.

3.1. The Fusion Reaction

In this method acidic heterocyclic systems such as 2,6-dichloropurine (25) react with peracylated sugars such as 17 at 150–155° in a melt to form the assumed intermediates 26 and 27, which combine in 54% yield to give 28 and the volatile acetic acid. (54, 55) This fusion reaction is usually performed in the presence of catalytic amounts of Lewis acids to promote the formation of the electrophilic sugar cation 27; the reaction works with acidic systems such as substituted or annelated imidazoles, purineS, triazoles, or pyrazoles. Yields, however, seldom exceed 60–70% (see Ref. 55 for a review).

3.2. The Metal Salt Procedure

In this procedure metal salts of heterocyclic systems are reacted with protected sugar halides. In the original procedure, the silver salt of 2,6,8-trichloropurine (29) was heated with acetobromoglucose (24) (56) in xylene to give glucopyranoside 30.

Because of the diminished polarity and thus better solubility (as well as reactivity) of mercuric salts compared with silver salts, investigators more recently have preferred the mercuric salts of heterocyclic bases, since the mercuric salt procedure often succeeds when the silver method fails. (1-5)

The initial products when using the mercuric salt procedure with uracils and cytosines are often *O*-glycosides such as **32**, which rearrange or react with another sugar halide to form the desired nucleoside. (57-59) Thus mercuric salt **31** reacts with **24** to give **32**, which is converted by excess **19** and added mercuric chloride in acetonitrile to nucleoside **33** and the N^1, N^3 -bis(nucleoside) **34**. (60) Apparently, sugar cation **35** (derived from **19**) attacks the N^1 nitrogen in **32** to form intermediate **36**, which fragments to nucleoside **33**. The nucleophilic iminoether system in **33** can then react with additional cation **35** to give **34**.

The mercuric salts of purines **37** can react with equivalent amounts of sugars such as **19** to give the kinetically controlled N^3 -nucleosides **38**, which rearrange on heating with HgBr₂, HgCl₂, or Hg(CN)₂ to the thermodynamically controlled "natural" N^9 -nucleosides **39** as well as some N^7 -nucleosides. (61) As in the rearrangement of the *O*-glycoside **32** to nucleoside **33**, the presence of reactive sugar cations such as **35** promotes the rearrangement of **38** to **39**. All of these mechanisms have been summarized and discussed. (61a)

In addition to the often moderate yields and complicated mixtures obtained with the mercuric salt procedure, traces of mercuric impurities, which have strong biocidal properties, can falsify the biological data on the final nucleoside. (63), (63)

Recent important nucleoside syntheses employ the sodium salts of purines and related acidic heterocyclic systems, which are prepared in situ with NaH or analogous bases. These salts react with **21** in acetonitrile to give the corresponding β -nucleosides via an apparent S_N2 displacement of the 1 α -chlorine by the heterocyclic base. (64) Thus, sodium salt **40** reacts with **21** in acetonitrile to afford 68% of 2¢-deoxy- β -nucleoside **41**. The analogous reaction of the sodium salt of 6-chloropurine (**42**) with **21** gives 59% of the desired N^{θ} -nucleoside **43** as well as 11% of the corresponding $N^{\vec{r}}$ -nucleoside **44**. Other authors report (65) that the isolated sodium salt of adenine (**45**) reacts best with **21** in acetone to afford directly

43% of the protected 2ϕ -deoxyadenosine 46 plus 8% of the α -nucleoside 47, thus obviating the need for aminating the 6-chloro compound 43 to the unprotected 2ϕ -deoxyadenosine.

Equally effective are the phase-transfer glycosylations of heterocyclic bases such as 2-methylthio-4-methoxypyrrolo[2,3-*d*]pyrimidine (48), in which a standard N^7 -glycosylation (e.g., by the Hilbert-Johnson method) is apparently not possible because the pyrimidine moiety is more nucleophilic than the pyrrole moiety. Thus, 48 is readily glycosylated by 22 in the presence of triethylbenzylammonium chloride (TEBA) and 50% aqueous sodium hydroxide to give 63% of β -nucleoside 49 as well as 21% of α -nucleoside 50. (66) The acidic 4-nitro-1*H*-pyrrolo[2,3-*b*]pyridine 51 reacts analogously with 21 and

tris[2-(2-methoxy)ethyl]amine (TDA-1) and KOH to afford **52** in 78% yield. (67) The sodium

salt of 2-cyanopyrrole (53) reacts with 20 to give orthoamide 54, whereas the reaction of 53 with ribofuranosyl chloride 55 affords 61% of nucleoside 56. (68)

These methods employing sodium salts or phase-transfer reagents are quite efficient for the synthesis of 2'-deoxynucleosides (see the subsequent section on the synthesis of 2'-deoxynucleosides).

3.3. The Classical Hilbert-Johnson Procedure for the Preparation of Pyrimidine Nucleosides

In 1930 Hilbert and Johnson (69-71) reacted 2,4-diethoxypyrimidine (57) with 24 to give the protected intermediate 58 in ~ 30% yield. This intermediate can be saponified to the glycosylated uracil 59 or aminated by ammonia to the cytidine analog 60. The liberated ethyl bromide can, however, convert 57 to the *N*-ethyl derivative 61, thus diminishing the yields. It was later postulated that 57 and 24 react to give the N^1 -alkylated intermediate 62, which is then cleaved by bromide anion to afford 58 and ethyl bromide. (2, 70)

Reaction of 2,4-dimethoxypyrimidine (63) with 21 affords a mixture of α -anomer 64 and β -anomer 65 in which the α -anomer predominates. Several explanations for this unexpected behavior have been advanced, since an S_N2 reaction of the nucleophilic pyrimidine should lead predominantly to the β -nucleoside 65. (72)

The classical Hilbert-Johnson reaction thus has a number of drawbacks:

(1) 2,4-dialkoxypyrimidines have to be prepared from the corresponding uracils via the corresponding 2,4-dichloropyrimidines; (2) yields are generally only

moderate owing to the formation of byproducts such as *O*-glycosides and *N*-alkylated products such as **61**; and (3) dealkylation of the resulting 4-alkoxy compounds with acids can cause difficulties, whereas the transformation of **58** into the cytidine analog **60** with ammonia under pressure at elevated temperatures proceeds without complications.

3.4. The Silyl-Hilbert-Johnson Reaction

Introduction of the Silyl-Hilbert-Johnson reaction by Birkofer, (73, 74) Nishimura, (75, 76) and Wittenburg (77) was a major advance. Silylation (e.g., with HMDS) converts the polar, often rather insoluble pyrimidine bases into lipophilic silyl compounds, which can be distilled and which are readily soluble in organic solvents, permitting homogeneous reactions. Because of the electron-releasing property of silicon, (78) the silylated heterocycles are better nucleophiles than the corresponding alkoxyheterocycles. The longer O-Si bond of 1.89 Å compared to the O-C bond of 1.53 Å makes the trimethylsilyl groups less bulky than a *tert*-butoxy group and results in the rapid solvolysis of remaining 4-O-trimethylsilyl groups. Because of the high mobility of the trimethylsilyl group one always obtains the thermodynamically most stable silylated heterocycle. (78a)

Silylated uracil **66** reacts with protected 1-halosugars such as **19** at room temperature in the presence of HgCl₂, HgBr₂, or Hg(OAc)₂ to afford the postulated intermediate **68**, which is cleaved by chloride or bromide ion to form 4-trimethyl-silyloxy compound **71** and the volatile Lewis acid trimethylsilyl chloride (**69**) or trimethylsilyl bromide as leaving groups. (**77**, **80**) The 4-trimethylsilyloxy compound **71** can either be hydrolyzed in high yield to the 2,3,5-tri-*O*-benzoylated uridine **72** or reacted with primary or secondary amines to give the corresponding protected cytidines **73**. (**79**) Instead of adding mercuric salts, one can also heat **19** with **66** in absolute benzene or toluene or fuse **19** with **66** at temperatures up to 190° under reduced pressure in the absence of solvents. (**76**)

Finally, on reaction of **19** and **66** in benzene with silver perchlorate (or silver triflate) at room temperature, AgCl (or AgOTf) precipitates and the cyclic protected sugar perchlorate (or triflate) **67** is formed. Reaction of **67** with the silylated base **66** then affords intermediate **68**, which undergoes fragmentation by perchlorate (or triflate) anion to furnish **71** and the Lewis acid trimethylsilyl perchlorate (**70**) (or trimethylsilyl triflate). (**74**, 80)

Because of the thermal instability of protected 1-halosugars such as **19**, **20**, or **21**, reactions of silvlated bases with mercuric salts or silver perchlorate in benzene at room temperature usually afford the best results. However, as mentioned before, use of mercuric salts gives rise to toxic impurities. (63) Thus the AgClO₄ procedure is preferable, affording high yields of protected nucleosides and protected 2-thiouridines and cytidines. (81)

It should be emphasized that all perchlorates are potential explosives; neat trimethylsilyl perchlorate explodes above 50°. (82) Importantly, nonexplosive triflate salts analogous to 67 can be obtained efficiently by treatment of 1-O-acyl- or 1-O-alkylsugar benzoates with trimethylsilyl triflate (TMSOTf).

4. Silyl-Hilbert-Johnson Reaction in the Presence Of

Friedel-Crafts Catalysts

4.1. Nucleoside Synthesis with SnCl₄ and Related Friedel-Crafts Catalysts

The Silyl-Hilbert-Johnson reaction of silylated 6-azauracil 74 with 19 in the presence of mercuric salts affords 6-azauridine-2',3',5'-tri-O-benzoate (76,

60%), as well as a series of colored impurities that apparently contain mercuric compounds. On the other hand, reaction of **74** with **18** in the presence of SnCl₄ or TiCl₄ in 1,2-dichloroethane at 20° affords crystalline **76** in 93% yield. (83, 84) The reactive intermediate **75** can be converted by excess pyrrolidine into the

cytidine analog 77 in 57% yield. (79)

Friedel-Crafts catalysts such as SnCl₄ or TiCl₄ had been previously employed for the synthesis of purine nucleosides. (85, 86) For example, 1-O-acyl- or 1-O-alkyl-protected sugars were converted in situ into their corresponding reactive sugar cations such as **67** and then reacted with free purine bases, a technique which is still being applied. (86a-86b) However, Friedel-Crafts catalysts had not previously been used in combination with silylated heterocycles or any other silylated compounds such as silyl enol ethers. (87)

The reaction of silvlated heterocyclic bases such as 2-thiocytosine (78) with 18 and $SnCl_4$ affords 2-thiocytidine-2',3',5'-tri-O-benzoate (79) in 95% yield. (84)

Surprisingly, the weakly basic silylated 5-nitrouracil **80a** reacts with **18** in the presence of ~ 10 mol % of SnCl₄ to afford 5-nitrouridine-2 ,3 ,5 -tri-O-benzoate

(81a) in nearly quantitative yield, (84) whereas the corresponding
5-nitro-2,4-dimethoxypyrimidine does not react at all with 21 under classical
Hilbert-Johnson conditions. (88)

Compared to **80a**, the more basic silylated 5-methoxyuracil **80b** and silylated 5-morpholinouracil **80c** react with **18** much more slowly and only in the presence of excess SnCl₄ in acetonitrile to give 90% of **81b** together with **81c**, **82b**, and **82c**, in 53, 3, and 32% yields, respectively, along with the corresponding N^1 , N^3 -bis(nucleosides) **83**. The same reaction in the less polar 1,2-dichloroethane affords

even less of the desired N^1 -nucleosides **81b** and **81c**. (90) In contrast to SnCl₄, the weaker Lewis acid TMSOTf gives much higher yields of **81b** and **81c** (see the following section).

In the aforementioned examples, it is primarily electronic factors that determine the N^1/N^3 ratio. With silylated 6-methyluracil **84**, however, steric as well as electronic factors determine the formation of protected 6-methyluridine **85** (89) as well as the protected N^3 product **86** and the N^1, N^3 -bis(nucleoside)

87. (89a) Interestingly, nucleoside **85** in solution exists in the *syn* conformation (25, 26) owing to the interaction of the 6-methyl group with the sugar moiety.

Under optimal conditions employing carefully redistilled SnCl₄ and purified acetonitrile, 41% of **85**, 52% of **86**, and 3% of **87** are obtained, (89a) whereas much higher yields of **85** are again obtained with TMSOTf as catalyst (see the following section). No regiochemical problems are encountered in the intramolecular cyclizations of **88** and **90** with SnCl₄ in acetonitrile to form the nucleosides **89** and **91** in good yields. (91-93) For analogous cyclizations of silylated bases with Lewis acids see refs 94–97a-f.

In the SnCl₄-catalyzed Hilbert-Johnson reaction, other sugar moieties such as 21 can be employed to give high yields of 1:1-mixtures of the β - and α -nucleosides. Analogous reactions with the arabinose derivative 22, peracylated

 β -D-ribopyranose **23** (84) and acylated di- and polysaccharides (98) are summarized in Tables III and IV.

Although reaction of 4-trimethylsilyloxypyridine (92a) with 18 in boiling 1,2-dichloroethane in the presence of $SnCl_4$ gives nucleoside 93a in 63% yield, the corresponding silylated 4-aminopyridine 92b does not react under these conditions. Analogously, silylated pyrimidin-4-one 94 furnishes a mixture of 26% 95 and 60% 96. (99)

The reaction of silylated purine bases such as disilylated N^6 -benzoyladenine 97 with peracylated sugars such as 98 affords the corresponding purine nucleoside 99 in up to 70% yield. (100, 101)

In the reaction of silylated 6-azauracil **74** with **18**, other Friedel-Crafts catalysts such as $FeCl_3$, $BF_3 \cdot OEt_2$, $AlCl_3$, or $TiCl_4$ also give good yields of 6-azauridine-2 ,3 ,5 -tri-O-benzoate (**76**). (84) Some research groups have subsequently

employed BF₃·OEt₂, (102-104) SnCl₂, (105,106,106a,b,c) SbCl₅, (107-109) ZnCl₂, (110-112) Znl₂, (113) EtAlCl₂ (114-117) or SiF₄. The latter boils at –86° and has been used in combination with protected 1-fluorosugars. (118) However, the majority of nucleoside chemists prefer either SnCl₄, which can be readily redistilled before use and gives homogeneous reaction mixtures in either 1,2-dichloroethane or acetonitrile, or the newer trimethylsilyl triflate (TMSOTf) or trimethylsilyl nonaflate. Newly developed Lewis acids for selective aldol reactions, such as SnCl₄/Sn(OTf)₂/ LiClO₄, (119) Sn(OTf)₂/Bu₂Sn(OAc)₂, (120) Cp₂ZrCl₂/ AgClO₄, (121) or Ph₃CClO₄ (122, 123) might also be applicable to nucleoside synthesis, as could the recently described combination of AgOTf and Ph₂SnS. (124) A direct comparison, however, shows that yields of nucleosides with other catalysts are essentially the same as those with trimethylsilyl triflate. (106c)

The Lewis acid should generally be just strong enough to convert protected 1-O-acyl-, 1-O-alkyl-, or 1-halosugars into their corresponding oxonium salts (such as 67). Any additional acidic strength of the Lewis acid will only result in increased σ -complex formation with the silylated base, which in turn might lead to complications in regioselectivity or reaction rates.

4.2. Nucleoside Formation with TMSOTf

During the total synthesis of 5-methylaminomethyl-2-thiouridine, (125, 126) a rare nucleoside from tRNA, (127) the silylated 2-thiouracil **100** was reacted with 1-chlorosugar **19** in the presence of AgClO₄ in benzene to give the substituted 2-thiouridine **101**, in which the *N-tert*-butoxycarbonyl group had been lost. The only strong Lewis acid that could have cleaved the BOC group was TMSClO₄ (**70**), whose formation as an intermediate during the Silyl-Hilbert-Johnson reaction in the presence of AgClO₄ had been postulated previously. (**74**, 80) It was subsequently demonstrated that TMSClO₄, as well as TMSOTf, does indeed cleave *N*-BOC groups in amino acids and peptides. (**128**-130)

TMSCIO₄ and TMSOTf had previously been investigated using ²⁹Si NMR. (131) These studies showed that they are much stronger Lewis acids than, for example, $(TMS)_2SO_4$ or TMSCI. Whereas the explosive (82) TMSCIO₄ is prepared from AgCIO₄ and TMSCI in benzene, the chemically stable TMSOTf (102, bp 133–134°) is obtained by heating TfOH with TMSCI. (131) The higher boiling TMS nonaflate (103, bp 68–69°/11 torr) is formed on heating nonaflic acid with TMSCI or on reacting potassium nonaflate with TMSCI.

TfOH + TMSCI	heat ►	TMSOTf + HCl \uparrow
$n-C_4F_9SO_3H + TMSCI$	heat	$TMSOSO_2C_4F_{9}-n + HCl \uparrow$ 103
$n-C_4F_9SO_3K + TMSCl$	MeCN	TMSOSO ₂ C ₄ F ₉ - n + KCl ↓
AgClO ₄ + TMSCl	C ₆ H ₆ ►	$\frac{\text{TMSCIO}_4 + \text{AgCl}}{70} \downarrow$

Since Friedel-Crafts catalysts such as SnCl₄ or TiCl₄ had been used

successfully for the Silyl-Hilbert-Johnson nucleoside synthesis, (84) these new silylated Lewis acids TMSCIO₄ and TMSOTf were reacted with silylated uracil **66** and **18**. It was found that catalytic amounts of TMSCIO₄ or TMSOTf in 1,2-dichloroethane or acetonitrile were adequate for generating the reactive intermediate cation **67**, although the use of 1.1 equivalents was more efficient. Reaction of **67** with silylated uracil **66** leads to the silylated intermediate **71** and regenerated TMSCIO₄ or TMSOTf. (132, 133) Hydrolysis with aqueous NaHCO₃ in CH₂Cl₂ affords 2',3',5'-tri-O-benzoyluridine (**72**) in more than 80% yield. Most importantly, during hydrolysis no emulsions are formed (132, 133) as are usually encountered on aqueous workup employing SnCl₄ as catalyst for nucleoside synthesis.

In contrast to TMSCIO₄ and TMSOTf, the weaker Lewis acids (131) $(TMS)_2SO_4$ and TMSCI do not promote nucleoside formation, since they apparently do not convert **18** into the sugar cation **67**. However, the even weaker Lewis acid TMSI, which can be prepared in situ from TMSCI and NaI in acetonitrile, (134) does catalyze the formation of nucleosides; TMSI is a combination of the hard trimethylsilyl cation and the soft iodide anion and effects nucleoside synthesis via an apparent push and pull mechanism. (135–139,139a,c,d),On reaction of

1-O-acetyl-5-O-pivaloyl-(3S)-2,3-dideoxyapiose with silylated thymine or

 N^6 -benzoyladenine in acetonitrile at – 5 to 0°, catalytic amounts of TMSI at – 5° seem to induce faster formation of the mixture of *syn* and *anti* nucleosides than equivalent amounts of TMSOTf at – 5°. (139a) Pure TMSI is, however, quite unstable and thus must always be redistilled before use; it will also cleave ester or ether functionalities in the sugar or heterocyclic moieties.

The persilylated polymeric perfluorinated sulfonic acid Nafion® (139b) has not as yet been explored as catalyst, (133) although it could be recovered by filtration and regenerated by heating with excess TMSCI.

Importantly, use of TMSOTf (102) as catalyst dramatically increases the yields of the 5-methoxy- or 5-morpholino-2,3,5-uridine tri-*O*-benzoates (81b and 81c) from the silylated uracils 80b,c and 18. Thus, even in 1,2-dichloroethane, 89% of 81b (compared to 53% using SnCl₄) and 95% of 81c (compared to 39% using SnCl₄) are obtained. Analogously, use of catalytic TMSOTf with the rather basic silylated 4-tri methylsilyloxypyridine (92a) and 4-trimethylsilylaminopyridine (92b) gives the corresponding nucleosides 93a and 93b in 87% and 80% yields, (133) whereas 93a is obtained only in 63% yield with SnCl₄. (99) For the explanation of these differences in chemical behavior see the following section.

Under carefully controlled conditions using TMSOTf in purified acetonitrile, silylated 6-methyluracil **84** affords the desired protected 6-methyluridine **85** in 71% yield compared to 41% with SnCl₄. (133) Furthermore, the undesired acylated N^3 -nucleoside **86** rearranges on silylation to **104**, and heating with TMSOTf to yield 53% of the protected N^1 -nucleoside **85** and 33% of the N^1, N^3 -bis(riboside) **87**. The sterically hindered **87** reacts on heating with silylated 6-methyluracil **84** and TMSOTf to give the N^1 -nucleoside **85**. (133)

On extended exposure of silylated 2',3',5'-tri-O-benzoyl-6-methyluridine **105** to TMSOTf in 1,2-dichlorethane, 24% of the benzoylated 2,2 -anhydronucleoside **106** is formed together with 23% of the N^1, N^3 -bis(riboside) **86** and trimethylsilyl benzoate. (133) This cyclization to **106** might be favored by the *syn* conformation of **85** and **105**.

Silylated N^6 -benzoyladenine **108a**, as well as silylated N^2 -acetylguanine **108b** and xanthine **108c**, afford after saponification the corresponding crystalline purine nucleosides **109a–c** in 81, 66, and 49% yields, respectively. (133)

BzO

OBz

85 (25%)

Following the TMSOTf catalyzed synthesis of

BzO

ÓBz

87

 N^6 -benzoyladenosine-2',3',5'-tri-O-benzoate by TLC indicates that the reaction proceeds at least partially via the protected N^3 -38 or N^7 -nucleoside 110a to give adenosine after saponification.

Thus the N° -silylated N° -adenosine **111** is smoothly rearranged in the presence of TMSOTf to 2',3',5'-tri-O-benzoyladenosine (**112**). (133)

The reaction of silvlated N^2 -acetylguanine (108b) with riboside 18 in the presence of TMSOTf at reflux in 1,2-dichlorethane affords, after workup and saponification of the protecting groups with methanolic ammonia, an overall yield of 66% of crystalline guanosine containing at most traces of the N^{7} -isomer **110b** (133) and not, as later claimed, a crystalline mixture of **109b** and 110b. (140-141a) The guanosine synthesis apparently proceeds at least partially via the corresponding N^7 -nucleoside, which can be isolated after saponification as the unprotected nucleoside 110b along with the desired thermodynamically controlled 109b. Heating of the reaction mixture with TMSOTf in boiling 1,2-dichloroethane affords a mixture of the protected N^{7} and N^9 -guanosines in which only 10–15% of the N^7 -nucleoside can be detected, whereas use of SnCl₄ in acetonitrile results in predominant formation of the protected N^7 -nucleosides. (142) These results seem to indicate that in 1.2-dichloroethane or acetonitrile, SnCl₄ forms a σ or chelate complex with the N^3 - and N^9 -nitrogen atoms of silvlated N^2 -acetylguanine, blocking the access of 67 to N^9 or the rearrangement of the silvlated N^7 -guanosine to the N^{9} -guanosine. However, reaction of **108b** with **17** in the presence of TMSOTf

in 1,2-dichloroethane at reflux affords, after saponification, the N^{0} - and N^{7} -guanosines **109b** and **110b** in a ratio of 2:1. The sugar derivative **18**, which is converted into the more stable sugar cation **67** compared with **27** (p. 6) and will thus facilitate any rearrangement of the protected and silylated N^{7} -nucleoside into the corresponding N^{0} -nucleoside, furnishes **109b** and **110b** in a ratio of 6:1 under the same reaction conditions (cf p. 48). (142)

Blocking the 6-oxygen in N^2 -acetylguanine with the bulky diphenylcarbamoyl group followed by silylation to **113** and subsequent reaction with **17** in the presence of TMSOTf leads to the protected guanosine **114**, which can be saponified to the natural guanosine **109b** in 68% overall yield. (140) Analogously, in the TMSOTf catalyzed reaction with **17**, introduction of a 6-(4-nitrophenylethoxy) group into 2-bromoxanthine followed by silylation gives less than 5% of the undesired N^7 -nucleoside. (143) Reaction of **113** with 1,2,3,4,6-penta-*O*-acetyl- β -D-galactopyranose in the presence of TMSOTf in toluene at 80° gives, in addition to the anticipated protected N^9 -nucleoside, a

rearranged protected nucleoside in which the O^6 -diphenylcarbamoyl group has migrated to replace the N^2 -acetyl group. (143)

However, in view of the additional steps involved in preparing O^6 -blocked guanine derivatives, the direct synthesis of guanosine (or analogs) starting with **108b** (or similar bases) and **18** to give crystalline guanosine in 66% yield (133) after saponification should always be considered. The synthesis of 9-substituted guanines has been reviewed. (144)

Peracylated pyranose 23 is transformed on heating with TMSOTf into the reactive pyranose cation 115, which combines with silylated uracil 66 to give 1-[2 ,3 ,4 ,6 -tetra-O-acetyl- β -D-glucopyranosyl]uracil (116) in 89% yield. (133) The lower reactivity of pyranose derivatives with TMSOTf permits differentiation between the furanose and pyranose forms. Brief treatment of 2-deoxyribose with absolute methanol-HCl gives primarily the two kinetically controlled 1-O-methyl-2-deoxyribofuranoses (117) and minimal amounts of the 1-O-methylpyranoses (118), which as the thermodynamically controlled products become the major products on longer exposure to methanolic HCl. (145)

Acylation of the mixture of **117** and **118** with *p*-toluolyl chloride and pyridine affords mainly a mixture of the two anomeric *O*-acylated furanoses **119** and a minor amount of the anomeric pyranoses **120**, which can be readily separated by chromatography on silica gel with hexane-diisopropyl ether. (**146**) This mixture of the acylated furanoses and pyranoses is commonly treated with anhydrous HCl in acetic acid to give the labile crystalline **21** on crystallization as well as some noncrystalline **121**. (**51**) The crystalline **21** has become the standard sugar for the preparation of 2 -deoxynucleosides since the 3',5'-bis(*p*-toluoyl) β -nucleosides usually have higher melting points and lower solubility than the corresponding α -nucleosides, often permitting their separation by crystallization.

Because formation of the anomeric acylated *O*-methylfuranosides **119** is kinetically controlled, they are more readily converted to the corresponding reactive furanose cation intermediates by TMSOTf than the anomeric acylated 1-*O*-methylpyranosides **120**. Thus a mixture of **119** and **120** reacts with silylated 5-ethyluracil **122** at ambient temperature to give 58% of the desired β

-nucleoside **123** as well as 31% of the undesired α -nucleoside **124**. The same mixture of **119** and **120** affords only 35% of the crystalline protected **21** (133) on treatment with HCI-AcOH. Because of the reversibility of nucleoside synthesis, an undesired 2'-deoxy- α -nucleoside such as **124**, when silylated and kept for 46 hours at 24° with TMSOTf, affords 27% of the desired β -nucleoside **123** as well as 67% of recovered α -nucleoside **124**. (133)

A mixture of **119** and **120** was subsequently utilized to prepare analogously -deoxynucleosides of silylated 2-(1*H*)pyrimidone. (147) Related mixtures of 2-deoxyfuranosides and pyranosides were reacted with silylated uracil (148) and silylated 5-iodopyrimidin-2-one. (149)

Although longer reaction times increase the amount of β -anomer **123** obtained from **124**, they also lead to gradual decomposition of the sensitive 2-deoxyribose moiety in **123** and **124** to give 2-toluoyloxymethylfuran **259** (see section on 2 -deoxynucleosides). (150) Since there is always an equilibrium between the activated protected β - and α -anomers, silylation of β -anomers such as 3',5'-di-*O*-acetyl-*N*⁴-benzoyl-2 -deoxycytidine with *N*,*O*-bis(silylacetamide) (BSA), and subsequent heating with TMSOTf in acetonitrile for 3 hours at 80° affords 51% of the corresponding protected α -anomer. (151-151a) Treatment of 3 ,5 -di-*O*-acetylthymidine with acetic anhydride and sulfuric acid leads to the predominant formation of the 3',5'-di-*O*-acetyl- α -thymidine. (152-152a) On the other hand, free or 3 ,5 -O-protected thymidines are cleaved to glycals on heating with HMDS and $(NH_4)_2SO_4$. (152b-152c)

On employing 1-O-methyl-3,5-di-O-toluoyl-2-deoxyribofuranoside **119** or 1-O-methyl-2,3,5-tri-O-benzoyl-d-arabinofuranoside **328** and insufficient amounts of TMSOTf or SnCl₄, seconucleosides such as **332** (which are probably derived via activated intermediates such as **333**) can be isolated (cf the section on arabinonucleosides). These seconucleosides undergo cyclization to the anticipated nucleosides upon introduction of additional amounts of catalyst.

Sugar moieties containing sensitive azide groups (153, 279) as well as an assembly of complex functional groups have been employed. In the synthesis of octosyl acid A, silylated 5-carbomethoxyuracil **125** is reacted with the sugar moiety **126** to give the nucleoside intermediate **127** (154, 155) in 90% yield (see a related approach to octosyl acid A (156)). Analogously, the reaction of silylated uracil **66** with the rather complex sugar moiety **128** yields intermediate **129** (91%) for the synthesis of ezomycin (157) (see a related approach to ezomycin A (158)). In the synthesis of hikizimycin, an even more complex sugar moiety was employed with TMSOTf in nitrobenzene at 127° (see **515** \rightarrow **516**). (159, 160) The synthesis of nucleoside antibiotics was reviewed recently. (160a)

On reacting complex sugar moieties containing many basic functional groups, one has to realize that all these groups form either weak σ complexes with TMSOTf or stronger chelate-type complexes with SnCl₄, TiCl₄, or Et₂AlCl, which will slow down and perhaps even alter the course of the reaction. Thus, use of additional amounts of catalyst is necessary.

Even very weakly basic systems can be silvlated and converted into nucleoside-type structures. Thus 2,3-diaminomaleonitrile (DAMN) reacts in its disilylated form 130 with 18 and 2 equivalents of TMSOTf in CH_2CI_2 to furnish 50% of nucleoside 131 and 24% of the seconucleoside 132, whereas the same reaction in the presence of only 1 equivalent of TMSOT gives only imine **132.** (161) Similarly, the silvlated cyclic urea **133** or **134** affords only 16% of nucleoside 135 with 18 and TMSOTf as catalyst. (162) This low yield, however, might be due to the presence of monosilylated or free trifluoroacetamide derived from bis(trimethylsilyl)trifluoroacetamide (BSTFA) used for the silvlation of the cyclic urea to 133 or 134, since the trifluoroacetamide or its monosilyl derivative can compete with $133 \rightarrow 134$ for the reactive sugar intermediate 67. This possibility was recently confirmed in the silulation of 1,2,4,6-thiatriazin-3-one-1,1-dioxides with BSA followed by reaction with peracylated sugars in the presence of TMSOTf in acetonitrile at reflux, where only moderate yields of protected nucleosides were obtained, along with up to 46% of 1- β -acetamides of the protected sugars. (162a)

4.3. Transglycosylation with Lewis Acids

Since nucleoside formation in the presence of Lewis acids is a reversible process, a nucleoside base in a given nucleoside can be exchanged for another nucleoside base. This was first investigated by treating peracylated cytidine **136** with *N*⁶-benzoyladenine (**137**) in the presence of HgBr₂ and DMA in xylene at reflux to afford after saponification 39% adenosine (**7**) and 6% α -adenosine (**8**). (163) An exchange of ribose in 2 ,3 -isopropylideneinosine by acetobromoglucose gives the corresponding inosine analog in moderate yield. (164)

Much more effective are transglycosylations of silylated nucleosides and bases in the presence of trimethylsilyl perchlorate or TMSOTf. (151,165–168,170–172,176–179) N^3 -Benzoyl-2 ,3 ,5 -tri-*O*-acetyluridine (138) and excess persilylated N^6 -benzoyladenine (97) furnish an 81% yield of N^6 -benzoyl-2 ,3 ,5 -tri-*O*-acetyladenosine (139), whereas SnCl₄ as catalyst gives a much lower yield of a mixture of protected β - and α -adenosine. (166) N^4 -2 ,3 ,5 -Tetraacetylcytidine (136) and persilylated N^2 -acetylguanine 108b afford peracetylated guanosine 140 in 66% yield as well as 2% of the corresponding α -anomer in the presence of TMSOTf. (166)

A derivative of octosyl acid, **141**, reacts with **97** in boiling 1,2-dichloroethane to give analog **142** in 60% yield. (165, 166) Similarly, the transformation of the polyoxin derivative **143** affords **144**. (167) A similar transglycosylation of a complex

uridine derivative leads to the corresponding adenosine derivative as an approach to a total synthesis of sinefugin (168) (see also the transglycosylation of protected griseolic acid (169)).

Reaction of persilylated 3'-azido-2'-deoxy-5'-O-acetylthymidine (145) with

silylated N^6 -octanoyladenine (146) affords after saponification 27% of the corresponding β -purine nucleoside 147 as well as 35% of the corresponding α -anomer 148. (170) Reaction with persilylated N^2 -palmitoylguanine gives 28% of the corresponding β - N^9 -guanine nucleoside. (170)

The analogous reaction with silylated 2,6-diacetamidopurine affords the corresponding 2-aminoadenosine derivative. (171) Transformations of persilylated 3'-deoxy-3'-fluorothymidine and its 5'-acetyl derivative with persilylated N^2 -acylguanine, (172, 173) 2-fluoroadenine, (174) N^6 -benzoyladenine, (175) and benzimidazole (176) as well as of uracil and of 5-substituted uracils, (177, 178) furnish the corresponding protected β -2'-deoxynucleosides together with α -anomers in moderate yields.

The transglycosylation of 2'-deoxy-2'-trifluoroacetylaminouridine (149) with N^2 -palmitoylguanine 150 in the presence of BSA and TMSOTf and subsequent saponification with NH₃ affords guanine nucleoside 151 in 60% yield, (179) whereas 152 and 153 react in the presence of BSA and TMSOTf to give a 27% yield of 154 and 36% of the corresponding α -anomer 155. (151)

Purine nucleosides can also be transformed into the corresponding pyrimidine nucleosides. Thus, protected purine nucleosides such as **156** and N^4 -octanoyl cytosine (**157**) on heating with BSA and SnCl₄ in 1,2-dichloroethane provide the corresponding cytidines **158** in 30–60% yield. (**180**)

Likewise N^2 -2',3',5'-tetraacetyl guanosine (140) reacts with 2-acetoxyethyl acetoxymethyl ether (159) in chlorobenzene at reflux in the presence of traces of *p*-toluenesulfonic acid to furnish the desired N^2 -derivative 160 as well as the N^7 -analog 161 in a 9:7 ratio. (181, 182)

On attempted transglycosylation of N^6 -benzoyloxetanocin di-O-acetate (162) with persilylated uracil 66 in the presence of SnCl₄, the intermediate sugar cation rearranges to form furanose nucleosides 163 and 164. (183) For further examples of transglycosylation, see Refs. 184-186. For a review of transglycosylation of purine nucleosides, see Ref. (186a).

4.4. One Step–One Pot Nucleoside Syntheses

Since silylations are accelerated by Lewis acids, (187) and the silylation of heterocyclic bases is much more rapid in the presence of Friedel-Crafts catalysts, one can combine the different steps of nucleoside synthesis in a one step–one pot procedure in a polar solvent such as acetonitrile. (188, 189) (a) silylation of the heterocyclic base, (b) silylation of the triflate or nonaflate salts to form TMSOTf or (CH_3)₃SiOSO₂(CF_2)₃CF₃ (if SnCl₄ is not used as a catalyst), and (c) nucleoside synthesis with acylated 1-*O*-acyl- or 1-*O*-alkylsugars in the presence of a Friedel-Crafts catalyst.

Such a one step-one pot preparation avoids the handling of the easily hydrolyzed silyl compounds and saves time since no prior silylation step is needed. Under these one step-one pot conditions the amounts of TMSCI and HMDS have to be chosen in such a way that all reactive heterocyclic hydroxy, thio, amino, or amido groups as well as the free triflate or nonaflate acids $C_nF_{2n+1}SO_3H$ or their alkali salts are silvlated with formation of NH₄Cl and NaCl or KCl, since any free NH₃ would neutralize the Friedel-Crafts catalyst. Because all these salts are practically insoluble in acetonitrile, they precipitate and the equilibria are shifted toward the desired electrophilic silvl ester. (189)

 $3 \text{ TfOH} + \text{HMDS} + \text{TMSCl} \longrightarrow 3 \text{ TMSOTf} + \text{NH}_4\text{Cl}$ $n-C_4F_9SO_3K + \text{TMSCl} \longrightarrow \text{TMSOSO}_2C_4F_9-n + \text{KCl}$ 103

Since potassium nonaflate ($C_4F_9SO_3K$) is only partially soluble in boiling acetonitrile, the KCl formed on its reaction with TMSCl to give **103** could occlude unreacted reagent. Therefore, an excess of finely powdered potassium nonaflate should be employed.

As described in Eq. 1, a mixture of 0.33–0.40 equivalent of TMSCI and HMDS has to be used for free TfOH, whereas for potassium nonaflate (Eq. 2) equimolar amounts of TMSCI have to be employed. (189)

For silylating uracil, cytosine, or a purine such as N^6 -benzoyladenine containing two reactive oxygen or oxygen and nitrogen functionalities, a mixture of at least 0.7–0.8 equivalent each of TMSCI and HMDS is necessary to obtain the corresponding persilylated uracil, cytosine, or N^6 -benzoyladenine with concomitant formation of 0.7–0.8 equivalent of NH₄CI. For a heterocyclic base such as 4-pyridone with only one reactive oxygen group, only ca. 0.4 equivalents each of TMSCI and HMDS are needed to afford the silylated base **92a** (X = O). Uridine-2 ,3 ,5 -tri-O-benzoate (166a = 72) is readily obtained in 80–84% yield starting from uracil (165a) and 18 employing free triflic acid or potassium nonaflate and TMSCI in boiling acetonitrile, whereas the stronger Friedel-Crafts catalyst SnCl₄ is effective at room temperature. Table A summarizes typical examples of one step–one pot syntheses of pyrimidine nucleosides.

2-Thiouracil (165b) with SnCl₄ as catalyst gives

2-thiouridine-2 ,3 ,5 -tri-O-benzoate (166b) in ~ 60% yield. The more basic 5-methoxyuracil (165c) reacts with 18 in the presence of potassium nonaflate/TMSCI/HMDS to afford crystalline

5-methoxyuridine-2 ,3 ,5 -tri-O-benzoate (166c = 81b) in 71% yield. The analogous reaction of N^4 -acetyl cytosine (165d) with 18 followed by saponification with methanolic ammonia gives 56% of pure crystalline cytidine. (189)

Table A. One Step - One Pot Reactions with Sugar 18

Acid or			Acylated
Base Salt	TCS/HMDS	Conditions	Nucleoside
165a CF ₃ CO ₃ H	1.2/1.1	83°, 1 h	<mark>166a</mark> (81%)
165a C ₄ F ₉ SO ₃ K	3.1/0.7	83°, 14 h	166a (84%)
165a SnCl₄	0.8/0.8	24°, 2 h	166a (83%)
165b SnCl₄	0.8/0.8	24°, 7 h	166b (59%)
$165c C_4F_9SO_3K$	3.1/0.7	83°, 20 h	<mark>166c</mark> (71%)
165d C ₄ F ₉ SO ₃ K	3.1/0.7	83°, 27 h	166d (56%)

6-Azauracil (167) reacts with 23 in the presence of $SnCl_4/TMSCI/HMDS$ to furnish the crystalline protected nucleoside 168 in 42% yield. The rather basic

4-pyridone (169) and 18 are converted by potassium nonaflate/TMSCI/HMDS followed by saponification to the free nucleoside 170 in 50% yield. (189)

The oily mixture of anomers **119** and **120** furnishes with potassium nonaflate/TMSCI/HMDS primarily the kinetically controlled 1-cation of the furanose, which reacts in situ with 5-ethyluracil (**171**) to give 26% of the β -anomer **123** and 21% of the corresponding α -anomer **124**. (189)

The purine bases N^6 -benzoyladenine (137) and N^2 -acetylguanine (138) react with 18 in the presence of potassium nonaflate/TMSCI/HMDS, affording after saponification with methanolic ammonia, crystalline adenosine in 63% and crystalline guanosine in 44% yield, respectively. (189)

In 1,2-dichloroethane as solvent, increased salt concentrations cause increased formation of N^3 -nucleosides as well as N^1, N^3 -dinucleosides. Although these increased salt concentrations are usually irrelevant in acetonitrile, the reaction of 6-methyluracil with **18**, which is particularly sensitive to added salts or impurities, affords even in acetonitrile in the presence of potassium nonaflate/TMSCI/HMDS only 20–25% of 6-methyluridine-2 ,3 ,5 -tri-O-benzoate (**85**) besides the undesired N^3 -nucleoside **86** and the N^1, N^3 -bis(riboside) **87**. (**189**)

The one-pot reaction of 2-bromohypoxanthine with tetra-O-acetyl- β

-D-ribofuranose (17) in acetonitrile can be performed by initially heating 2-bromohypoxanthine with BSA, then adding 17 and TMSOTf to give initially more $N^{\vec{l}}$ - than N^{θ} -nucleoside (HPLC). This ratio changes rapidly within 15 minutes, especially in the presence of excess 17, to afford 75% of the N^{θ} -nucleoside and 10% of the $N^{\vec{l}}$ -nucleoside. (190)

The cytosine analog **172** gives the protected cytidine analog **173** in 41% yield. (191)

Interestingly, the one-pot procedure employing SnCl₄ as catalyst applied to thymine or N^4 -benzoyl cytosine (**165e**) and methyl-4,6-di-O-acyl-2,3-dideoxy- α -D-glucopyranoside furnished 60–65% of the desired protected β -nucleosides and only 18–20% of the α -nucleosides. By comparison, the corresponding reaction of N^2 -isobutyrylguanine with SnCl₄ or TMSOTf yields complicated α / β mixtures of the corresponding N^9 - and N^7 -nucleosides. (192)

Equally simple is an alternative one-pot synthesis of purine nucleosides (86-86a) and cytidines. (192e) In this procedure purines such as adenines, (86b, 192a-j) N⁶-benzoyl (192m, n, p) or N⁶-octanoyladenine (137), (86-192g) (192a) 2,6-dichloropurine 6-chloropurine, (25), (86a-192a) N^2 -palmitoylguanine, (86) or N^4 -acyl cytosines (180,192f,o) are reacted with 2 α -acyloxysugars such as **18** in the presence of 1–2 equivalents of SnCl₄ or $AICl_3$ (86) in 1,2-dichloroethane or acetonitrile. The excess $SnCl_4$ apparently forms partially soluble σ complexes with the heterocyclic bases to afford, after the usual workup with aqueous NaHCO₃, the corresponding purine nucleosides (86,86a,b,192a-k) and cytidines (180,192e,f,o) in yields of up to 81%. In a recent synthesis of sinefugin, this one-step reaction failed with adenine and SnCl₄, whereas it succeeded with persilylated N⁶-benzoyladenine in the presence of TMSOTf. (192I)

The one- or two-step methods with silylated heterocyclic bases virtually guarantee solubility of the silylated base in the reaction solvent, and thus a homogeneous, complete reaction. The free base, however, is apparently only partially soluble as its transient σ complex with SnCl₄, leading to incomplete reactions as well as to destruction of sugar moieties and thus lower yields. (1921)

Although the yields obtained in these one step—one pot reactions are usually somewhat lower compared to the conventional two-step procedure, the one step—one pot modification is so simple that it can also be used by investigators with limited practical experience in preparative organic chemistry.

5. Mechanism of Nucleoside Formation in the Presence

of Friedel-Crafts Catalysts

5.1. Experimental Results

The weakly basic silylated 5-nitrouracil **80a** reacts rapidly with **18** and small amounts of SnCl₄ in 1,2-dichloroethane to form 5-nitrouridine-2',3',5'-tri-*O*-benzoate (**81a**) in nearly quantitative yield, (**84**) whereas the much more basic silylated 5-methoxyuracil (**80b**) and 5-morpholinouracil (**80c**) do not react at all with **18** in the presence of less than 1 equivalent of SnCl₄ (90, 193, 194) or TMSOTf. (133) Apparently, one equivalent of SnCl₄ (or TMSOTf) is inactivated or neutralized by σ -complex formation with the silylated bases, and only an excess of SnCl₄ (or TMSOTf) can lead to the formation of the electrophilic sugar cation and thus to nucleoside formation (albeit at a much lower rate than with **80a** since only small concentrations of free silylated bases **80b** and **80c** are available because of σ -complex formation). (90, 193, 194) Furthermore, besides the desired natural N^1 -nucleosides **81b** and **81c**, large amounts of the undesired N^3 -nucleosides **82b** and **82c** as well as the corresponding N^1 , N^3 -bisnucleosides **83b** and **83c** are obtained.

Replacing SnCl₄ by the weaker Friedel-Crafts catalysts TMSOTf or $(CH_3)_3SiOSO_2(CF_2)_3CF_3$ and switching from 1,2-dichloroethane to the more polar solvent acetonitrile, which competes with the basic silylated uracils for the Lewis acids, results in yields of up to 90% of the desired natural N^1 -nucleosides **81b** and **81c**. (193, 194)

These results can be reconciled if one assumes that three reversible processes occur during nucleoside formation: (a) reaction of the peracylated sugar **18** with the different Friedel-Crafts catalysts to give the rather stable electrophilic sugar cations **35** or **67**; (b) competing reversible formation of σ complexes between the silylated bases and the different Friedel-Crafts catalysts—with sugar moieties containing basic benzyl ether groups, TMSOTf will also form weak σ complexes whereas SnCl₄, TiCl₄, or Et₂AlCl will give stronger chelate-type complexes that consume additional amounts of catalyst; and (c) reaction of the electrophilic sugar cation with the uncomplexed free silylated bases to form the nucleoside bond. (193, 194)

In the first process, the Friedel-Crafts catalysts SnCl₄, TMSOTf, $(CH_3)_3SiOSO_2(CF_2)_3CF_3$, or TMSClO₄ convert peracylated sugar **18** to the corresponding 1,2-acyloxonium salts **67** as the only electrophilic sugar moiety, with concomitant formation of either SnCl₄OAc⁻ orCF₃SO₃-, C₄F₉SO₃- or ClO₄⁻ and silylated acetic acid TMSOAc. (193, 194) These cyclic 1,2-acyloxonium salts should, however, always be generated in the presence of the nucleophilic silylated bases since all these salts derived from 1-acyloxy-, 1-alkoxy-, or 1-halofuranoses or pyranoses rearrange gradually in the presence of Lewis acids such as $SbCl_5$ or $BF_3 \cdot OEt_2$ in acetonitrile or nitromethane to isomeric cyclic 1,2-acyloxonium salts (195–198a) and might furthermore react with acetonitrile in a Ritter reaction (199-204) to give protected 1-acetylaminosugar derivatives.

Under these reversible and thus thermodynamically controlled conditions, the nucleophilic silylated bases can only attack the furanose (or pyranose) sugar cation **67** or **115** from the top (the β side) to afford the β -nucleosides with only minute amounts of the corresponding α -nucleosides as postulated by the Baker rule. The latter states that a base should approach the sugar ring from the side opposite the group at position 2, regardless of the relative configuration of C₁ – C₂. (205) Peracylated 1-*O*-acyl- and in particular 1-*O*-acetyl-peracetylated di- and oligosaccharides (98) afford analogously the corresponding 1,2-cyclic acyloxonium salts with SnCl₄ or TMSOTf, which are converted by silylated bases to the corresponding acylated nucleosides.

Other nucleophiles such as alcohols or silylated alcohols react analogously under these reversible conditions with cyclic acyloxonium triflates **67** to give the corresponding β -glycosides **174** in often excellent yields, (206) which are thermodynamically favored compared to the orthoesters **175**. (210, 211) Although this new methodology has found wide application, (207) only rarely is the origin of sugar cations such as **67** discussed. (208–209d)

After β attack of silylated uracil **66** on sugar cation **67**, the α -trimethylsilyloxy group in the intermediate salt **176** reacts with the triflate anion to regenerate TMSOTf (or with SnCl₄OAc⁻ to form trimethylsilyl acetate as well as regenerated SnCl₄), thus forming protected uridine **71**.

The classical 2,4-dialkoxypyrimidines such as 5-iodo-2,4-dimethoxypyrimidine (177) react analogously with sugar 18 in the presence of SnCl₄ with cleavage of the α -alkoxy group to give the corresponding 4-alkoxynucleosides 178, (84) whereas with heterocyclic bases such as 4-trimethylsilyloxypyridine (92a) the 4-trimethylsilyloxy group reacts smoothly with triflate anion (or SnCl₄OAc⁻) to give the protected nucleoside 93a. (133)

On reaction of 2-methoxy-4-trimethylsilyloxypyridine (179) with 20 and silver triflate in nitromethane, the intermediate pyridinium triflate 180 is cleaved by attack of the hard triflate anion on the hard 4-trimethylsilyloxy group to furnish the protected 2-methoxy-4-pyridone nucleoside 181 in 51% yield. Reaction of 179 with 20 in the absence of silver triflate leads to the pyridinium bromide intermediate 180, in which the soft 2-methoxy group is cleaved by the soft bromide ion to give, after hydrolysis of the 4-trimethylsilyloxy group, nucleoside 182 in 20% yield. (212-212a)

As emphasized above, under reversible and thus thermodynamically controlled conditions, β -nucleosides are normally obtained nearly exclusively. The only exceptions to this near exclusive β attack on 67 (with TfO⁻, SnCl₄OAc⁻, or C₄F₉SO₃⁻ as counterions) can apparently occur when:

a. the heterocyclic base contains strongly polarized or negatively charged groups, which can associate with the positively charged α side of the sugar cation in 67. This has been demonstrated in silylated 2-nitroimidazole (213-213a) or silylated 1,2,4- λ ³-diazaphosphole (183a), which is converted by TMSOTf to the α -anomer 185 in 16% yield via the orthoester intermediate 184. The structure of 185 was confirmed by single crystal X-ray analysis. (214) Not unexpectedly, the analogous reaction of 183b, which contains an electron-withdrawing ester group that impedes the formation of 184b, furnishes the crystalline β -nucleoside 186 in 44% yield after saponification by methanolic ammonia; (214)

- b. the sugar cation is apparently not formed quantitatively as in the case of the 4-thiosugars; (215) or
- c. when the sugar 1,2-acyloxonium salt contains polar groups such as amide or nitro on the α side. (216, 217) Peracylated glucosamides, however, in which the basic nitrogen moiety is protected or neutralized by a strongly electron-attracting *N*-trifluoroacetamido- or *N*-2,4-dinitrophenyl group give more than 80% of the β -nucleoside with persilylated uracil and SnCl₄; (218) or
- d. a stabilized cation can form above the plane of the sugar (e.g., as a chloronium cation in 1-O-acetyl-3,4-O-benzoyl-2-chloro-2-deoxy- α -D-arabinose), resulting exclusively in α -nucleoside formation. (219)

Two publications (220, 221) report the isolation of ~ 5% α -nucleoside **190** in addition to the expected β -nucleoside **189** during the reaction of silylated 5-fluorouracil (**187**) with 5-deoxy-1,2,3-tri-*O*-acetyl- β -d-ribofuranose (**188**) in the presence of TMSOTf in CH₂Cl₂. The β -nucleoside **189** rearranges on standing for 1 week with TMSOTf in CH₂Cl₂ to form 2% of the α -nucleoside **190**. The assignment of the structure of the α anomer **190** is based on the identity of the free nucleoside **191** with the α -nucleoside obtained by reaction of **187** with 1-*O*-methyl-2,3-isopropylidene-5-deoxy-D-ribofuranose (**192**) in the presence of TMSOTf to give **193** and **191** on subsequent acid hydrolysis of the isopropylidene group. (221)The analogous reaction of silylated thymine with 2,3-*O*-isopropylidene-1,5-di-*O*-*p*-toluoyl- β -D-ribofuranose gives 65% of the protected α -nucleoside in the presence of TMSOTf. (222, 223)

In the synthesis of nucleosides with 4-thiosugars, 2- α -benzoyloxy- or 2- α -(4-methoxy)benzoyloxy groups stabilize the cyclic cations (such as 67) much better than a 2- α -acetoxy moiety to give more or exclusive formation of β -nucleosides.

More extensive application of HPLC to mother liquors of the desired β -nucleosides will reveal more cases where protected or free α -nucleosides can be detected in small amounts. During the synthesis of pteridine-ribofuranosides, the formation of small amounts of the corresponding α -nucleosides was observed. (223a)

The related reaction of silylated uracil 66 with

1-chloro-2,3-O-isopropylideneuronic acid methyl ester (**194**) in the presence of SnCl₄ furnishes the β -*N*³-nucleoside **195** in 32% yield. (224) TMSOTf and SnCl₄ behave differently in the presence of polar groups such as ester and amide functionalities, since SnCl₄ binds more strongly to the carbonyl group and might conceivably bind more tightly than TMSOTf to the α -2,3-isopropylidene moiety in **194**, thus blocking the α side to result in formation of the β -N³-nucleoside **195**.

Whereas the 2,3-O-isopropylidene group such as in **192** can only stabilize the 1-cation in the presence of chelate-forming $SnCl_4$, 2- α -methoxy,

(225,226,226b,c) 2- α -silyloxy, (226-226a) 2- α -phenylsulfenyl, (227–229,229a) 2- α -phenylselenyl, (230, 231) 2- α -

tosyloxy, (192k) as well as 2,3-epimino groups (232) stabilize the 1-cation from the α side with SnCl₄ as well as with TMSOTf, resulting in the predominant formation of β -nucleosides. It should be realized, however, that reactions of 22 containing a 2- β -benzyloxy group give predominantly β -nucleosides with silylated bases in the presence of SnCl₄. (84)

In the synthesis of oxetanocin, the sugar derivative **196** with a stabilizing oxalyloxy group reacts with silylated *N*-benzoyladenine (**97**) in the presence of SnCl₄ to give via the bridged cation **197** (containing a less strained and therefore more stable bicyclo[5.2.0] system) after hydrolysis and *O*-benzoylation 16% of di-*O*-benzoyloxetanocin (**198**), 14% of the corresponding α -nucleoside **199**, as well as 9% of di-*O*-benzoylepioxetanocin (**200**). (233) The corresponding di-*O*-benzoylsugar **201** affords the cation **202** with **97** in the presence of SnCl₄ and thus exclusively the α -nucleoside **199**. (233)

Since the rather stable 1,2-acyloxonium ions 67 (from 18 and TMSOTf) are only weak electrophiles, they react only with electron-rich nucleophilic aromatic systems such as 1,3,5-trimethoxybenzene (203) to give 60% of the *C*-nucleoside 204 and 5% of the corresponding bis(nucleoside) 205. (133) This reaction was later applied in a slightly modified form. (133a–c) Although *C*-nucleosides (39-44) are not the subject of this review, these results demonstrate the close relationship between the Friedel-Crafts catalyzed Silyl-Hilbert-Johnson reaction and the classical Friedel-Crafts reaction.

5.2. Reversible ${\rm s}$ -Complex Formation between Silylated Bases and Friedel-Crafts Catalysts

The formation of σ complexes between Friedel-Crafts catalysts and silvlated bases is dependent on the acidity of the Friedel-Crafts catalysts as well as on the basicity of the silvlated heterocyclic bases. Although the pK_a values for

silylated heterocyclic bases have not been determined, the pK_a values of the closely related methoxypyrimidines and pyridines (234) can be used for comparison purposes: the increase in basicity from 2-methoxypyridine (pK_a 3.2) to 4-methoxypyridine (pK_a 6.5) is striking and explains why 4-trimethylsilyloxypyridine (92a) forms such strong σ complexes and why 92a is converted to the corresponding nucleoside 93a only under forcing conditions. (99, 133) The basicity of 2,4-dimethoxypyrimidine (pK_a 3.1) is increased to pK_a 3.63 on introduction of an electron-releasing

5-methyl group. Since the basicities of amino heterocycles such as cytosine and in particular adenine or guanine are decreased on acylation to the N^4 -benzoyl or N^4 -acetyl cytosines, N^6 -benzoyladenine or N^2 -acetyl- or N^2 -isobutyrylguanine, it is obvious that these *N*-acylated bases and their analogs are commonly employed in their silylated form for Friedel-Crafts catalyzed nucleoside synthesis in preference to the more basic silylated amino heterocycles, resulting in faster and cleaner nucleoside formation. With the more basic silylated cytosine 222, at least two equivalents of SnCl₄ had to be employed to effect a smooth preparation of 224, (235) whereas other nucleoside forming reactions employing sensitive protected 2-deoxy sugars and silylated cytosine in the presence of *tert*-butyldimethylsilyl triflate failed. (236)

The structures of the σ complexes between silvlated 2-pyridone and silvlated 5-methoxyuracil and SnCl₄ as well as TMSOTf can be derived from their ¹³C NMR spectra. (194) The resulting upfield shifts of the C⁶-carbon atom adjacent to the quaternized nitrogen atoms in the pyridine and pyrimidine series give good information on the σ complexes between the silvlated bases and the particular Lewis acids. Tin tetrachloride, as the stronger Lewis acid, binds more tightly to the *N*¹-nitrogen of silvlated 5-methoxyuracil to give **206** than does TMSOTf to give **207**. Whereas one equivalent of SnCl₄ leads to practically quantitative formation of the σ complex **206**, nearly five equivalents of TMSOTf are needed to effect quantitative formation of the related σ complex **207**. (193, 194)

The pronounced upfield shift of the C⁸-carbon atom in the ¹³C NMR spectrum of silylated N^6 -benzoyladenine (97) on addition of increasing amounts of TMSOTf can be interpreted by σ -complex formation at the N^1 -nitrogen, the center of highest electron density as depicted in 208. (194) These conclusions are in agreement with the ¹³C NMR spectra of protonated adenine in solution. (237)

The interaction between the disilylated

5-methyl-5,6-dihydro-*sym*-triazine-2,4(1*H*,3*H*)dione (**209**), containing a basic tertiary nitrogen atom, and SnCl₄ leads apparently to a σ complex between this basic tertiary nitrogen atom and SnCl₄ to form **210**, in which the basicity of the N^3 -nitrogen is decreased. Since the N^3 -nitrogen in **210** is sterically more encumbered than the N^1 -nitrogen, exclusive formation of the desired N^1 -nucleoside is observed. (238, 239) Thus the basic N^5 -nitrogen group does not interfere with nucleoside synthesis. Likewise a free 5-methylaminomethyl group in silylated 2-thiouracil readily gives the anticipated protected nucleoside in the presence of excess catalyst. (126)

Following the reaction of silylated imidazole **211** and TMSX (X = ClO₄⁻, Γ , TfO⁻) in CD₂Cl₂ by ²⁹Si-NMR measurements demonstrates that in the equilibrium between **211** and its σ complexes **212** the formation of **212** is most favored for X = ClO₄⁻ > I⁻ > TfO⁻. (240) Thus (CH₃)₃Sil apparently has a stronger tendency to form σ complexes with **211** than TMSOTf. No quantitative data, however, nor any discussion of earlier work (194) on such σ complexes are provided. (240)

During studies on the synthesis of bredinin, (241-243) the structure of persilylated imidazole **214** was established by MS and ¹³C NMR and comparison with *N*-methylimidazole **213**. Imidazole **214** was then treated with increasing amounts of TMSOTf; the ¹³C NMR spectra of the resulting σ complex **214 215** or **216** showed the expected upfield shift of the C-5 signal. The maximum shift, however, was not reached even on addition of 1.4 equivalents of TMSOTf. (242)

Addition of equivalent amounts of the stronger Lewis acid SnCl₄ to **214** leads to the fully complexed compound **217**, in which the C-5 signal is only slightly shifted downfield. In contrast, the carboxamide carbon undergoes a pronounced downfield shift, whereas the adjacent C-4 carbon is shifted upfield. These data support the structure of **217** as a σ complex between the silylated carboxamide group and SnCl₄. (242) Such σ complexes of carbonyl groups with SnCl₄ or TiCl₄ have recently been investigated and reviewed. (244-246) Complexes of Lewis acids such as TiCl₄ with peracylated sugars have also been described (247, 248) and should be taken into account when reacting complex sugars such as peracylated disaccharides (98) or **515** (see p. 99). (160)

As a consequence of these different σ complexes between 214 and TMSOTf to give 215 216 and of 214 with SnCl₄ to yield 217, the reaction of 214 with 17 in the presence of TMSOTf leads to only 17% of the desired protected bredinin 218 and 61% of the undesired N^3 -nucleoside 219 as well as 9% of the N^1 , N^3 -bis(riboside) 220. On the other hand, use of 1 equivalent of SnCl₄ (to form 217) followed by additional catalytic amounts of TMSOTf to generate the reactive sugar

cation affords protected bredinin **218** in 83% yield. (242) It seems probable that the additional catalytic amount of TMSOTf can be replaced by a catalytic amount of SnCl₄.

There are thus differences in catalytic behavior between $SnCl_4$ and TMSOTf if polar groups such as amides or esters are present in the silylated heterocyclic base or in the sugar. Note also the different reactions of persilylated N^2 -acetylguanine (108b) with 18 in the presence of $SnCl_4$ and TMSOTf in dichloroethane. (142)

In a striking example of σ complexes of the sugar moiety with a Lewis acid, thiosugar 221 reacts with silylated cytosine (222) in the presence of 2 equivalents of SnCl₄ to form (via σ complex 223) exclusively β anomer 224 in 80% yield, whereas with TMSOTf as catalyst a 1:1 β / α -mixture is produced. (235) In the case of the oxasugar 225, dichlorotitanium diisopropoxide leads via 227 to exclusive formation of the β -nucleoside 228, whereas TMSOTf gives again a 1:1 β / α -mixture. (235) Other studies, however, have demonstrated that during or prior to the formation of 223 or 227 a cation is also formed with SnCl₄ at the cyclic acetal or thioacetal carbon leading to completely racemized nucleosides. (249) In contrast to SnCl₄ or dichlorotitanium diisopropoxide as catalysts, TMSOTf converts the sugar derivative 225 into cation 229, which reacts with silylated thymine 226 to give a 2:1 mixture of the optically active β -nucleoside 228 and the α anomer 230. Thus reactive groups in the silylated base as well as in the sugar moiety have to be considered in choosing the optimal Lewis acid catalyst.

For additional publications on 3- or 2-oxa-, thia-, or selenanucleosides, see Refs. 249a-k.

5.3. Mechanism of Pyrimidine and Purine Nucleoside Synthesis

Taking all the above results into account, the mechanism of the Friedel-Crafts catalyzed Silyl-Hilbert-Johnson synthesis of pyrimidine nucleosides is straight-forward as exemplified for the reaction of silylated 5-methoxyuracil

80b in the presence of SnCl₄ and TMSOTf. The reaction of **80b**, **18**, and the stronger Lewis acid SnCl₄ sets up an equilibrium in which the σ complex **206** between the N^1 of **80b** (the center of highest electron density) predominates in nonpolar solvents such as 1,2-dichloroethane. Since only the free silylated base **80b** will react with the electrophilic sugar cation **67** (with SnCl₄OAc⁻ as the counterion) to form the 4-*O*-trimethylsilylated *O*-benzoylated 5-methoxyuridine **231**, and the concentration of free silylated base **80b** is rather low in the equilibrium with SnCl₄, nucleoside formation will be rather slow.

Furthermore, in the equilibrium between σ complex 206, silylated base 80b and SnCl₄, the SnCl₄ will stay close to the electron-rich center at the N^1 -nitrogen. It is this slightly dissociated form, in which the N^1 -nitrogen is still blocked and the N^3 -nitrogen is available, that reacts with 67 to form the undesired silylated *O*-protected N^3 -nucleoside 232. Both the silylated protected N^1 -nucleoside 231 as well as the corresponding N^3 -nucleoside 232 can react further with 67 (with SnCl₄OAc⁻ as counterion) to give the protected N^1, N^3 -bis(nucleoside) 83b.

As already emphasized, the ratio of free **80b** and complexed form **206** is also dependent on the polarity of the solvent. The more nucleophilic solvent acetonitrile, which forms σ complexes with TiCl₄, (250) SnCl₄, (251) and BH₃, (252) competes with the silylated base for the electrophile and simultaneously favors the formation of the polar sugar cation **67**. Consequently, in acetonitrile there is more silylated base **80b** and more sugar cation **67** present, and thus more of the desired natural *N*¹-nucleoside **231** is formed.

The corresponding reaction with TMSOTf is analogous: since it is a weaker Lewis acid than $SnCl_4$, however, less σ complex **207** is formed in the equilibrium. Therefore, more free base **80b** is present and consequently more silylated N^1 -nucleoside is obtained. Again, both the protected silylated N^1 -nucleoside **231** as well as the protected silylated N^3 -nucleoside **232** can react further with **67** to form the N^1 , N^3 -bis(nucleoside) **83b**. Experimental support for these equilibria is provided by the rearrangement of protected silylated N^3 -nucleosides (104 85) (133) as well as by the different transglycosylations catalyzed by TMSOTf (see section on transglycosylations).

With respect to the reaction of silvlated purines with peracylated sugars in the presence of TMSOTf (or SnCl₄) the aforediscussed σ complex between persilvlated N^6 -benzoyladenine 97 and TMSOTf yields the σ complex 208 as determined by ¹³C NMR. (194) If **208** is assumed to be in equilibrium with the N^{1} -silvl compound 233, then it should react readily with 67 to give the N^3 -nucleoside 234 as a kinetically controlled intermediate, which can be isolated after a short reaction time (133) or rearranged in situ (111 **112**) to the thermodynamically most stable silvlated natural N^{9} -nucleoside 235. (133) Alternatively, 233 (or the isomeric 506) could also react directly with 67 (compare the arrows in 233) to the natural N^9 -nucleoside 235 as well as to the N^{7} -nucleoside 236, which would subsequently rearrange to the desired N^{9} -nucleoside 235. If the reaction of 97 with 67 is followed by TLC, a number of intermediates can be discerned, which disappear during the course of the reaction. (133) Since the protected N^6 -nitrogen in the N^7 -nucleoside 236 interferes sterically with the sugar moiety, formation of 236 is disfavored, resulting in high yields of the protected natural adenosine 235.

Because of the initial formation of the intermediates such as the N^3 -nucleoside **234**, the formation of σ complexes between these intermediates with Lewis acids such as TMSOTf or SnCl₄ is necessary to induce the rearrangement of these intermediates to the thermodynamically favored protected adenosine **235** (or the corresponding protected N^9 -guanosine). Consequently a less polar solvent such as 1,2-dichloroethane or toluene is advantageous for the synthesis of purine nucleosides. In contrast, the more polar acetonitrile competes with silylated purine bases for the Friedel-Crafts catalysts and impedes these rearrangements, leading to longer reaction times, some cleavage of the nucleosides, and destruction of the sugars.

In guanosine synthesis, however, the 6-trimethylsilyloxy group is less of a steric impediment so that formation of small amounts of N^7 -guanosine (110b) is always observed in the equilibrium (cf. 108b \rightarrow 109b + 110b as well 113 114). Consequently, introduction of a more bulky 6-triethylsilyloxy or 6-triisopropylsilyloxy group into N^2 -acetylguanine might lead to formation of less N^7 -guanosine.

For similar investigations compare the aforediscussed synthesis of sym-1,3,5-triazine nucleosides (209 \rightarrow 210) as well as imidazole nucleosides (214 220).

5.4. Regioselectivity of Nucleoside Formation

When free or silvlated organic bases contain more than one nitrogen atom, each of these nitrogen atoms can in principle become attached to a sugar derivative. The formation of the resulting different nucleosides is either kinetically or thermodynamically controlled.

Whereas the regioselectivity in the synthesis of pyrimidine nucleosides (e.g., formation of the undesired *O*-nucleosides and the N^3 -nucleosides) has been discussed, consideration of some principles and of additional techniques such as blocking of nitrogen functions are in order. With heterocyclic bases containing a carbonyl or thiocarbonyl group, the nitrogen atom either α or γ to the carbonyl or thiocarbonyl group is preferred for nucleoside formation. Thus

in 1,2,4-triazin-5-one (237) only the N^2 -or N^4 -nitrogen can serve as a nucleophile to give either 238 or 239. (99) Thus silylated 1,2,4-triazin-5-one 240 affords 241 as well as 242.

Reaction of silylated 4-cyano-2*H*-pyridazin-3-one **243** with **18** at 0° in the presence of SnCl₄ leads to the kinetically controlled rather stable mesoionic pyridazinium salt **244** (80%), which can be saponified to the free nucleoside. (253) Conducting the reaction of **243** with **18** and SnCl₄ at 80° or heating **243** with SnCl₄ in 1,2-dichloroethane affords the thermodynamically more stable nucleoside **245** in 76% yield. (253)

To add further complications, the presence of carbonyl or thiocarbonyl groups in these nitrogen heterocycles can lead to the corresponding *O*- or *S*-glycosides via kinetic control. Since these *O*- or *S*-glycosides are normally not observed on using thermodynamically controlled conditions in the presence of Friedel-Crafts catalysts, they are not dealt with here.

On blocking the 1 position of *O*-alkylated or *O*-silylated uracils by a β -cyanoethyl substituent, as in **246** or by a benzyl group as in **248**, exclusive N^3 -substitution can be achieved. (254, 255) Alternatively, the silylated N^3 -benzyl-6-methyluracil **250** reacts with the standard sugar **18** in the presence of TMSOTf in acetonitrile

to give the protected 3-benzyl-6-methyluridine **251** (85%), from which the *N*-benzyl protecting group can be removed in 60% yield by treatment with BBr₃ (256) to give the protected 6-methyluridine **85**. For the application of the N^1 -*n*-octylthiocarbonyl-blocking group, see Ref. 256a. Analogously silylated 3,6-

dimethyluracil or silylated 4-methylthio-6-methylpyrimidin-2-one afford the corresponding disubstituted uridines. (256)

The silylated heterocycle **252** reacts with 1-chlororibofuranose **253** in acetonitrile at room temperature to give a 3:2 mixture of **254** and **255** (38%), whereas its reaction with **17** in the presence of SnCl₄ affords an 84 : 16 mixture of **254** and **255** (55%). (257)

The sometimes complex regioselectivity observed with silylated imidazoles has already been discussed in the synthesis of protected bredinin (**218**). With 3-substituted 1,2,4-triazoles, the formation of N^1 - or N^2 -nucleosides can be only partially controlled. (133, 258, 259) Compare also the subsequently described reactions of benzotriazole **260** to give **261** and **262**. (271) Thus nucleoside formation of each new type of silylated heterocycle has to be investigated under a variety of reaction conditions to ascertain which conditions are optimal for the preparation of the kinetically or thermodynamically controlled nucleoside.

6. Special Preparations

6.1. Synthesis of 2'-Deoxynucleosides

Although the syntheses of 2'-deoxynucleosides from suitable derivatives of 2-deoxysugars and salts of acidic heterocyclic bases or silylated heterocyclic bases have already been discussed, the different methods for their preparation are summarized here. These syntheses are among the most difficult in nucleoside chemistry. There are three main problems:

- a. The derivatives of 2'-deoxysugars such as the commonly employed 21 are frequently rather unstable, although 1-alkoxysugars such as 119 are much more stable;
- b. the total yields of the mixtures of the desired β anomer and the undesired α anomer are frequently only moderate; and
- c. the ratios of the desired natural β anomer to the undesired α anomer are often difficult to control and to reproduce.

The standard sugar for the preparation of 2'-deoxyribonucleosides, the rather expensive crystalline 21 (prepared from $117 \rightarrow 119 \rightarrow 21$), is rather unstable. The 1- α -chloro moiety in 21 can isomerize, (260, 261) especially in polar solvents in the presence of Lewis acids or excess phase-transfer catalysts/ 50% NaOH, (262) to the 1- β -chlorosugar, which results in the formation of predominantly α -nucleosides.

Furthermore, **21** can eliminate hydrochloric acid as well as *p*-toluic acid to form the crystalline 2-(*p*-toluoyloxy)methylfuran **259** as described in the classical Hilbert-Johnson reaction, whereupon only 3% of the desired β -anomer **257**, 20% of the α -anomer **258**, and up to 27% of **259** are isolated. (263) The analogous reaction of 5-iodouracilmercury (**256**) with **21** in DMF gave only low yields of the corresponding α - and β -nucleosides but a large amount of **259**. (263)

3',5'-Di-*O*-*p*-toluoylated 2'-deoxy- β -nucleosides such as **257** or **123** crystallize better, melt at higher temperatures, are often less soluble than the corresponding α -nucleosides and can frequently be isolated by simple crystallization. In contrast, the corresponding 3',5'-di-*O*-benzoylated, *p*-chloro-, or *p*-nitrobenzoylated derivatives often do not permit selective crystallization of the desired β anomer. (264-267)

The more acidic 3',5'-O-acyl groups such as *p*-nitrobenzoyl, however, are much more readily removed by ammonia and primary or secondary amines than the *O-p*-toluoyl group. This can be of importance in the synthesis of nucleosides containing such base-sensitive groups as 5-trifluoromethyl. Thus only the 3',5' -di-*O-p*-nitrobenzoyl-2'-deoxy- β

-D-ribofuranosyl-5-trifluoromethyluridine could be saponified selectively to the desired free nucleoside, whereas other acyl groups are hydrolyzed only under more vigorous conditions, which cause concomitant saponification of the 5-trifluoromethyl group to yield 2' -deoxy-5-carboxyuridine. (268) Other investigators have used, however, the *p*-chlorobenzoate successfully to obtain, with sodium methylate and methanol, free 2-deoxy-5-trifluoromethyluridine. (269)

As described earlier, acidic heterocyclic systems such as 2,6-dichloropurine, 2,6-dichloro-4,6-imidazo[4,5-c]pyridine, 6-chloropurine, or even adenine form the sodium salts **40**, **42**, or **45** on treatment with NaH in acetonitrile or acetone. These salts give on reaction with **21** nearly exclusively the desired β -nucleosides **41**, **43**, and **46** (via S_N2 replacement of the 1 α chlorine) as well as N^7 -nucleoside **44** and, in the case of **45**, α -nucleoside **47**.

Analogously, pyrrolopyridine **51** is converted in situ by KOH and the phase-transfer catalyst TDA-1 into the corresponding potassium salt, which reacts with **21** to afford the desired β -nucleoside **52** in 78% yield. (67) Powdered K₂CO₃/TDA-1 in acetonitrile often leads to considerably higher yields than standard phase-transfer conditions such as 50% NaOH/Bu₄NHSO₄/ CH₂Cl₂. (270) Benzotriazole (**260**) analogously affords 54% of the *N*¹-nucleoside **261** as well as 31% of the *N*²-nucleoside **262**. (271)

The Silyl-Hilbert-Johnson reaction of silylated substituted uracils and cytosines with the standard 1-halo-2-deoxysugar **21** in the presence of HgBr₂ or AgClO₄ furnishes the protected 2 -deoxynucleosides in moderate overall yields with α / β anomer ratios of 1:1–2. (80,272,272a)

The uncatalyzed as well as ZnCl₂-catalyzed reactions of silylated pyrimidines with **21** in anhydrous chloroform have been investigated. (261, 269) For example, the reaction of silvlated thymine gave an α / β -ratio of 1.5 without catalyst. Importantly, the β -selectivity was increased in solvents with low dielectric constant, which promote S_N2 displacement while minimizing anomerization of the 1 α -chlorine. Catalysis by Cul in chloroform has been described (273) as promoting the formation of 90% of 2'-deoxypyrimidine nucleosides, favoring the β anomer over the α anomer by ratios of 9:1–9:3. These anomer ratios are seen even with the weakly nucleophilic silylated 5-nitrouracil, which reacts much slower than the more basic silylated uracils. (273-273a) A possible explanation for the β -selectivity and high yield of desired natural 2-deoxy- β -nucleoside might involve a push-pull process, in which nucleophilic attack of the silvlated bases is assisted by Cul pulling at the α chlorine as depicted in 263. This procedure has recently been applied successfully to reactions of silylated 6-azauracil and 5-methyl-6-azauracil with **21** to give the desired protected β -nucleosides in 70–75% yield, whereas silvlated 5,6-dimethyluracil and 21 afforded the corresponding protected β -nucleoside in 50% yield. (274) For analogous reactions with CuCl in 1,2-dichloroethane, see Refs. 275, 275b. Addition of bases such as pyridine or triethylamine, as well as DBU, is reported to give an α / β ratio of 3:7 in reactions with 1-chloro-2,3-dideoxyribose derivatives. (276)

Pteridines have been reacted with 1- α -chloro-3,5-di-*O-p*-chlorobenzoyl-2-deoxyribofuranose in the presence of DBU to give the protected β -nucleosides in up to 54% yields. (276a)

The uncatalyzed Silyl-Hilbert-Johnson reaction has been applied to an anomeric mixture (α : β = 33:67) of 1-chloro-2,3-dideoxy-3 α -phenylthio-5-*O*-benzoyl-D-ribose (264a) to give on reaction with silylated uracil 66 in chloroform an anomeric mixture of the nucleosides 265 and 266 in a ratio of 32:68 as anticipated by a S_N2 mechanism. (229) The corresponding mixture of 1-*O*-acetates 264b reacts with 66 in the presence of SnCl₄ in CH₂Cl₂ to give 265 and 266 in a 69:31 ratio in 73% yield owing to the coordination of SnCl₄ with the sulfur atom in 264, whereas TMSOTf affords a 40:60 ratio of 265/266 in 87% yield. (229)

The sugar moieties related to **264** with phenylthio (227–229,229a) or phenylselenyl (230, 230a,b) groups located at the 2 α position give primarily the β -nucleosides with silylated bases **66** or **226** in the presence of SnCl₄.

An analogous complexation with a Lewis acid involving a 3 α group is possible

in sugar 267 to afford with 66 90% of β -nucleoside 268 and the corresponding α anomer 269 in a ratio of 8:2. (277) As expected, a 3 α -methoxythiocarbonyl methylene group complexes even better with SnCl₄ than with TMSOTf (278) to give the corresponding β anomers in more than 90% yield with silylated cytosine or thymine and SnCl₄ as catalyst. [Also see 3 α -*O*-(*N*-benzoyl)carbamoyl derivatives, (278a) as well as 3 α -*O*- or 5-*O*-thiocarbamates, (278b,c) which control the trans stereochemistry.]

Since protected 1-halosugars such as crystalline **21** with an exclusively oriented 1 α halogen (or mesylate or tosylate) are usually not available, whereas the chemically stable precursors for the preparation of these derivatives are readily available, protected 1-*O*-methyl or 1-*O*-acetyl derivatives of 2-deoxysugars such as **119** have been commonly reacted with silylated bases in the presence of TMSOTf or SnCl₄ to give 1:1 mixtures of the α / β anomers in high yields. The variations in the α / β ratio between 6:4 to 4:6 as observed by many groups in the Friedel-Crafts-catalyzed synthesis of nucleosides, which probably proceeds primarily via an S_N1 pathway, might be due to the different basicities of the applied silylated bases and might furthermore reflect the thermodynamic stabilities of the anomers. Reacting methyl-4,6-di-*O*-acetyl-2,3-dideoxy- α -D-glycopyranoside in the one step–one pot version of the Silyl-Hilbert-Johnson reaction (HMDS/TMSCl/ SnCl₄ in CH₃CN) with silylated uracil , thymine, or *N*⁴-benzoyl cytosine affords the protected nucleosides in high yield with an α / β ratio of ~ 1:3. (192)

In mixtures of peracylated 1-O-alkylfuranosides and pyranosides, the furanosides react via kinetic control at ambient temperature in the presence of TMSOTf in preference to the pyranosides. In addition, the undesired O-acylated and persilylated α -nucleosides (see 124 123) can be partially anomerized to the desired β -nucleosides in the presence of TMSOTf, thus

raising the yields of the β -nucleosides. (133) The frequently obtained α / β ratio of 1:1 might also be due to the ready isomerization (anomerization) of the 4-*O*-trimethylsilylated intermediates in the presence of a Lewis acid such as TMSOTf, SnCl₄, and probably also (NH₄)₂SO₄. (151,152,152a) On heating 5 -*O*-(*tert*-butyldiphenylsilyl)thymidine with HMDS and 0.2 equivalent of (NH₄)₂SO₄ for 2 hours at 140°, the nucleoside bond is cleaved and 1,4-anhydro-2-deoxy-3,5-bis-*O*-(trimethylsilyl)-D-erythropent-1-enitol is isolated in 76% yield. (152a–c)

A series of 3 α -substituted 2-deoxysugars **270** was reacted with silvlated thymine **226** in the presence of TMSOTf to give protected AZT **271a** (153, 279-286) or the related protected nucleosides **271b**, (288-291) **271c**, (114, 281, 287) **271d**, (276, 292-295) **271e**, (296) and **271f**, (297) as well as the corresponding α anomers **272**. For reviews of the preparation of these drugs, see Refs. 293-295.

Analogously, **270d** reacts with silylated 6-chloropurine in the presence of TMSOTf in 1,2-dichloroethane to give an $\alpha / \beta = 1:1$ mixture of the corresponding 2 ,3 -dideoxypurine nucleosides. (298) Interestingly, using Et₂AICI instead of TMSOTf affords the α / β mixture of the desired N^{9} -nucleosides as well as the N^{7} -nucleosides. (298)

Starting from inexpensive noncarbohydrate precursors, Sharpless oxidation and subsequent reactions afford the optically active dibenzylacetals 273, which react with silylated thymine 226 in the presence of TMSOTf to give seconucleosides 274, which were isolated in the case of 274a. Preferential

acid-catalyzed cyclization of **274** via transition state **275** (gauche effect) affords exclusively or predominantly the anti-AIDS drugs AZT **271a** and **271b**, as well as small amounts of the corresponding α -nucleosides **272a** (299) and **272b**. (300)

As described subsequently in the section on the synthesis of arabinofuranosyl nucleosides, seconucleoside **332** analogous to **274** and **275** was isolated.

The synthesis of 2'-deoxy-2',2'-difluorocytidine ("gemcitabine") **278** (301,301a,302) poses analogous problems. Reaction of the 2,2-difluoro-1-mesylate **276** with **277** in the presence of TMSOTf in 1,2-dichloroethane at reflux for 18 hours gives a crystalline 1:1 mixture of the hydrochlorides **278** and **279** in 49% yield. (302, 303) The α -nucleoside **279** can be anomerized to the β anomer **278** under basic conditions. (304) The two adjacent electron-attracting fluorine atoms, which deactivate any normal 1-acyloxy derivative, necessitate the 1-mesyloxy leaving group in **276** for a smooth reaction with TMSOTf to furnish the corresponding 1-cation.

In contrast to the 2,2-difluorosugar **276**, the corresponding 1-O-acetyl-2,2-diphenylthiosugar **280** reacts with silylated uracil **66** in the presence of TMSOTf to furnish a 4:1 mixture of **281** and **282** in 83% yield. (305)

Acylated glucals such as 3,4,6-tri-O-acetyl-D-glucal **283** undergo a Ferrier reaction with Lewis acids (145) to yield conjugated cations such as **284** lacking an α - or β -directing group. The reactions of **283** with silylated uracils **66**, **80**, and **226**

in the presence of TMSOTf or SnCl₄ afford via **284** the 2',3'-dideoxy- \triangle^2 nucleosides **285** and **286** in ~ 1:1 ratio in moderate yields. (306) Compare also other papers on these Ferrier-type (145) reactions. (307-312)

The homologous Ferrier reaction of mesylate **287** with disilylated cytosine **222** in the presence of EtAlCl₂ gives an α , β mixture of the cyclopropyl nucleosides **288** in 81% yield. (312a) An efficient Ferrier-type reaction was described employing *N*,*N*-dimethylformamide at reflux in the absence of a catalyst. (312b)

6.2. Chemical Conversion of Ribo- to 2 -Deoxyribonucleosides

As emphasized in the introduction, the building blocks of RNA—uridine, cytidine, adenosine, and guanosine—were apparently produced first during evolution and only subsequently reduced via their 5'-diphosphates by specific ribonucleotide reductases to the corresponding 2'-deoxynucleotides—the building blocks of DNA. Thus imitating nature, chemical methods have been developed to convert ribonucleosides into their corresponding 2'-deoxyribonucleosides.

Uridine and cytidine as well as their 5-substituted or 6-aza analogs can be readily transformed into their corresponding 2'-deoxy-2'-halonucleosides **290** with acetyl bromide (313-317) or propionyl bromide (318, 319) in up to 94% yield via the protected 2,2'-anhydronucleosides **289**. The halogen atom X (Cl, Br) can subsequently be removed from **290** by hydrogenation (313, 318, 319, 321) or by Bu₃SnH–AIBN (315, 317) to give 2'-deoxynucleosides **291** in overall yields of up to 75%. Treatment with Zn or Zn/Cu (314, 316, 317) or electrochemical reduction (320, 321) leads to the 2',3'-didehydronucleosides. Uridine or cytidine can also be treated first with methyl orthoacetate followed by acetyl bromide to give an even higher yield of the 2'-bromo intermediate **290**. (316, 317) Recently, 2'-O-(3-trifluoromethylbenzoyl-3',5'-di-O-benzoates of nucleosides have been reduced photochemically in the presence of *N*-methylcarbazole to 2'-deoxynucleosides in up to 73% yields. (321a)

R = H, Me; Z = CH, N; Y = O, NH; R¹ = Me, Et; X = Cl, Br

R = pyrimidine or purine base

Alternatively, the 3',5'-hydroxy groups in ribo (or xylo) nucleosides as well as their analogs can be protected selectively by the bifunctional Markievicz reagent (322, 323) TIPS-Cl₂ to **292**, which are readily transformed by a Barton reaction via **293** to **294** in high overall yields. (324,324a,325) The intermediate radical at C-2' can be trapped by allyltributylstannane to introduce a carbon substituent at the 2' aposition. (326) The analogous protection of N^2 -isobutyrylguanosine and subsequent tosylation gives **295**, which can be reduced by Li(HBEt₃) to **296** in 96% yield. (327) Furthermore, 2'-hydroxy-3',5'-di-*O*-acetylribonucleosides can be obtained in up to 74% yield by selective saponification of the 2'-*O*-acetyl group in 2',3',5'-tri-*O*-acetates by hydrazine hydrate or hydroxylammonium acetate. (328, 329)

Both the 2'- as well as the 3 -hydroxy groups of ribonucleosides can be removed by either applying DMF-dimethylacetal (330,330a,331) or triethyl orthoformate (330) followed by heating with acetic anhydride, (330-330a) reaction with methyl iodide, (331) or by treatment of the 2',3'-di-O-xanthates with Ph₂SiH₂ (332) to afford in high yields the 2',3'-didehydronucleosides, which can be readily hydrogenated to the saturated nucleosides. Alternatively, reacting the ribonucleosides with 2-acetoxyisobutyryl chloride (333, 334) followed by treatment of the resulting mixture of 2',3'-chloroacyloxy isomers with Zn/Cu-acetic acid also yields the corresponding 2',3'-didehydronucleosides. (335,335a,b) The different synthetic strategies for the preparation of the anti-AIDS drug 2 ,3 -dideoxyinosine have been summarized. (336)

Starting with the readily available 8-bromopurine nucleosides, which are converted via the 2',3'-dibutylstannylene derivatives to the corresponding 2'-O-tosyl derivatives such as 297, heating with NaSH gives the 8,2'-S-cyclonucleoside 298 in 69% yield. Subsequent treatment with Ra-Ni affords 2 -deoxyadenosine (299). (337)

6.3. Synthesis of β -D-Arabinofuranosylpyrimidine and Purine Nucleosides

Pyrimidine nucleosides can be readily converted into protected β -D-arabinofuranosylpyrimidine nucleosides **300** via 2,2'-anhydronucleosides **289** and subsequent hydrolysis. (338) Furthermore, β -D-arabinofuranosylpurine nucleosides **302** are accessible by S_N2 displacements of 2 -O-triflates of purine nucleosides **301** by azide, (339) benzoate, (339a,b) or fluoride ions (339c) followed by deprotection. But the total synthesis of β -D-arabinofuranosylpurine and -pyrimidine nucleosides is more complicated and of particular importance because of their interesting biological properties.

R = H, F; Z = CH, N; Y = O, NH; R¹ = Me, Ph

In the first synthesis of such a nucleoside, N^6 -benzoyladenine **303a** was reacted with the standard 2,3,5-O-benzyl-D-arabinofuranosyl chloride (**22**), (52, 53) which consists of more than 90% of the 1 α -chloro derivative, (340) in the presence of molecular sieves to give **304a** in 46% yield. (341) Hydrogenation of **304a** affords free 9- β -D-arabinofuranosyladenosine **305a** in more than 90% yield. (341)

Subsequent studies established that the reactions of 2,6-disubstituted purines **303** with **22** proceeded to **304** in ~ 50% yield in nonpolar solvents in the presence of molecular sieves, (341-343) whereas with Hg(CN)₂ as catalyst the formation of the corresponding α -nucleoside ($\alpha / \beta = 2.5$:1) was favored. (343) In the reaction of 2,6-diacylaminopurine **303e** or the silylated base **303f**

with **22**, the addition of molecular sieves, (342-345) distillative removal of TMSCI, (346) or addition of diisopropylethylamine (347) are recommended.

The benzyl ether groups in **304** can be readily removed by BCl_3 , (344, 345) by hydrogenation with H₂/Pd, (341, 342, 347) or by treatment with sodium in liquid ammonia (343) to give the corresponding free nucleosides **305**.

Alternatively, the acidic 7- and 3,7-deaza analogs (348, 349) **306** and **22** are readily converted in the presence of phase-transfer catalysts predominantly into the corresponding β -nucleosides **307** and some α -nucleosides **308**. Interestingly, the concentrations of the phase-transfer catalyst (348) and NaOH (66, 349) influence the ratio of **307** to **308**. A lower concentration of the phase-transfer catalyst tetrabutylammonium hydrogen sulfate (0.2 molar versus 1 molar) favors formation of the β anomer **307**. (348) The 1 α -chlorine in **22**, which is displaced in a S_N2 reaction by the *N*-anion of **306**, apparently undergoes equilibration at higher concentrations of tetrabutylammonium hydroxide to give more of the 1 β -chloride and consequently more of the corresponding α -nucleoside **308** (cf also the preparation of **49** and **50** (66, 67)).

Reaction of pyrazolopyrimidine **309** with **22** furnishes 43% of nucleoside **310**, 25% of the isomeric **311**, and 6% of the α anomer of **310**. (340) Imidazo[4,5-*d*]-isothiazoles give mixtures of the corresponding N^4 - and N^6 -regioisomers in good yields. (350)

The reaction of free or silylated imidazoles 312 with 22 proceeds with 312a to

give ~ 30% of 313a in the presence of triethylamine in CH_3CN , (351-353) whereas

312b affords predominantly **314b** as well as nucleoside **313b** after pretreatment with NaH in DMF. (354)

After conversion to the sodium salt with NaH/ CH₃CN , 2-carbomethoxy-3-cyanopyrrole reacts with 22 to give the corresponding β -D-aranucleoside 313 in 59% yield. (355)

After unsatisfactory reactions of 2,4-dimethoxypyrimidine **315a** (**63**) with **22** (**356**) to give **316a**, the 5-methyl derivative **315b** reacted with **22** in CH₂Cl₂ to give **316b** in 49% yield. (**357**) See also the reaction of 2,4-diethoxy-5-ethylpyrimidine with **22** to afford 80% of the corresponding 4-ethoxy-5-ethyl analog of **316**. (**358**)

Silylated pyrimidines **317b–c** or 1,2,4-triazine **317a** react with **22** in 1,2-dichloroethane and SnCl₄ (84, 358, 359, 363) to give β -nucleosides **318** in 40–60% yield. The analogous reaction of **317d** with **22** in CH₂Cl₂ and molecular sieves affords β -nucleoside **318d** in 58% yield. (360)

The silylated pyrazolouracils **319** (361) and **320** (362) react analogously with **22** in the presence of SnCl₄ as catalyst to give the corresponding β -nucleosides **321** and **323** as well as the isomeric β -nucleosides **322** and **324**.

The formation of ara- β -nucleosides **318**, **321–324** is surprising since a 2 β -alkoxy group can coordinate with SnCl₄ and stabilize a cation at position 1 on

the β side to result in the preponderant formation of the corresponding α -nucleosides. Thus it was demonstrated that reaction of 1-O-acetyl-3,5-di-O-benzoyl-2-O-methyl- β -D-ribofuranose with silylated uracil in the presence of SnCl₄ or TMSOTf (226b) afforded primarily the desired natural 2'-O-methyl-3,5-di-O-benzoyl- β -uridine. (225,226,226b) Reaction of a 2 α -*tert*-butyldimethylsilyloxyribose derivative with silylated uracil and SnCl₄ furnished primarily the β -nucleoside. (226-226a) It is possible that SnCl₄ assists in the S_N2 reaction of the silylated base by coordination to the 1 α -halogen from the α side as depicted in 325. As a consequence, gradual addition of SnCl₄ (or of 22) under diminished pressure in 1,2-dichloroethane (to remove the trimethylsilyl chloride formed) might give rise to increased amounts of the β -anomer 326. The potential influence of Cul in an analogous reaction of silylated bases with 22 as indicated in 325 should also be considered.

Silylated uracils **327** react with peracylated derivatives of D-arabinose **328** in the presence of SnCl₄ or TMSOTf via intermediate **329** in accordance with the Baker rule (205) to furnish exclusively the α -aranucleosides **330** (358, 364-366) (see also a corresponding pyranose example (367) as well as a reaction with silylated theophyllin (368)). There is only one exception described: the reaction of **327e** with **328** in the presence of SnCl₄ in CH₂Cl₂ is claimed to give the β -nucleoside **331e** in 57% yield. (369)

Condensing 327d with 328 in the presence of one equivalent of TMSOTf at 0° in acetonitrile provides (via 329) 63% of the anticipated α -nucleoside 330d as well as the crystalline seconucleoside 332d in 3% yield, whereas 327f, which contains a basic side chain, neutralizes the catalyst TMSOTf, giving a ~ 50% yield of the crystalline seconucleoside 332f. Addition of excess catalyst TMSOTf to the reaction mixture leads to the anticipated ring closure of the persilylated seconucleosides 332 to 330. (370) The formation of 332 is envisioned to take place by addition of TMSOTf to the furanoside oxygen atom in methyl 2,3,5-tri-O-benzoyl- α -D-arabinofuranoside 328 to give the intermediate secocation 333, which reacts with the silvlated bases 327 to give seconucleosides 332. (370) Recently, on reaction of methyl 2,3-dideoxy-3-fluoro-5-(4-phenylbenzoyl)- β-D-erythropentafuranoside with silvlated thymine 226 in the presence of TMSOTf in acetonitrile at – 25° a seconucleoside corresponding to 332 was isolated in 21% yield. The authors postulated that the aforediscussed addition of TMSOTf to the furanoside oxygen is a general reaction resulting in secocations such as **333**. (370a) For further examples leading to analogous seconucleosides employing 1-O-methyl-3,5-di-O-p-toluoyl-2-deoxyribofuranoside 119 and other sugars in the presence of SnCl₄, see references (370b-f). On treatment of 3',5'-diacetylthymidine with acetic anhydride/H₂SO₄ in acetonitrile, anomerization as well as formation of acetylated seconucleosides was observed. (152-152a)

On fusion of 1,2,3,5-tetra-O-acetyl-D-arabinofuranose **334** with the acidic 2-fluoro-6-chloropurine **303h** at 150°, 85% of the anticipated α -nucleoside **335** is obtained. (343)

Apart from the hydrolysis of anhydronucleosides **289** to arapyrimidine nucleosides **300**, the Walden inversion of 3',5'-*O*-protected 2'-*O*-triflates such as **301** with acetate or benzoate anions gives the corresponding 2'-*O*-acylated β -arabinofuranosylpurine nucleosides, and after hydrolysis araguanosine **302b** (X = OH). Because of the difficulties in preparing arapurine nucleosides with the expensive **22**, conversion of purine nucleosides such as guanosine **(5)** into arapurine nucleosides **303** should preferably be carried out via 3,5-protected 2'-*O*-triflates **301**. (339-339b)

Reaction of 8-bromo-2'-O-tosyladenosine (297) with sodium acetate in acetic acid/acetic anhydride followed by heating with sodium acetate in DMF affords the cyclonucleoside 336, which is cleaved with hydrazine to lead to araadenosine (305a) after oxidative removal of the 8-hydrazino group with HgO. Araguanosine (305b) can be prepared analogously. (371)

A different approach to the synthesis of β -D-arabinopyrimidine nucleosides is the prebiotic type-synthesis of aracytidine (**340**). On heating D-arabinose (**337**) with cyanamide in aqueous methanol to 50°, the crystalline oxazoline **338** can be isolated in up to 70% yields. (**372-374**) Subsequent reaction of **338** with cyanoacetylene and hydrolysis with aqueous ammonia leads via **339** to β -D-arabinofuranosylcytosine (aracytosine) (**340**) in up to 70% yields. (**372-374**) A modified approach gives rise to arauridine (**375**, **376**) or arathymidine (**377**) as well as to 2'-deoxy-2'-chloro-6-methyluridine. (**378**, **379**)

In a similar fashion, condensation of D-fructose (**341**) with cyanamide affords the oxazoline **342**, which is converted via 2,2 -anhydronucleoside and mild hydrolysis to 1-(β -D-fructofuranosyl)uracil **343**. (**380**, **381**)

The synthesis of purine aranucleosides by enzymatic transglycosylation starting from uracil or cytosine arabinosides (382-382a) is discussed subsequently.

The synthesis of 2'-fluoro-2'-deoxy- β -D-arabinofuranosyl nucleosides is

fraught with problems similar to those observed in the synthesis of β -D-arabinonucleosides. Whereas the conversion of 3',5'-O-protected 2'-O-triflates such as **301** with fluoride anions to the corresponding 2'-fluoro-2'-deoxy- β -D-arabinofuranosyl nucleosides **302** (X = F) has already been mentioned, such nucleosides can also be synthesized by reaction of 2-fluorosugar **344** with silylated pyrimidine bases **66**, **226**, or **277**. These reactions proceed in CH₂Cl₂ for 4 days at 24°, (383) in acetonitrile in the presence of TMSOTf, (360) in CH₂Cl₂ in the presence of Hg(CN)₂ (383a) at 24°, at 40° with molecular sieves, (384) in boiling chloroform, (385, 386) or

in the presence of NaI in CH₂Cl₂/ CH₃CN (387) to give the desired β -nucleosides 345 and the α -nucleosides 346 in up to 60% yield with α / β ratios of up to 1:20. Analogous reactions of silylated 2-pyrimidone and its 5-fluoro analog with 344 in 1,2-dichloroethane at reflux are also described, (388) as are reactions of silylated pyrimidines, (389, 390) cytosine, and free (391) or silylated 6-chloropurine (390-392) with the corresponding arabino- or 3-deoxysugar in the presence of TMSOTf (**102**). (392) For a mechanistic discussion of these reactions, see Ref. 385.

Reaction of N^6 -benzoyladenine (**303a** = **137**) with **344** for 3 days in CH₂Cl₂ at reflux in the presence of molecular sieves affords **347** (R¹ = NHBz;R² = H)

in 34% yield, as well as the α anomer 348, (384) whereas silylated 2-acetamido-6-chloropurine (303c) in benzene at reflux for 4 hours in the presence of Hg(CN)₂ furnishes 347 (R¹ = Cl;R² = NHAc) in 32% yield. (384) Reaction of *N*⁶-methyladenine with NaH in DMF followed by addition of 344 affords ~ 40% of 347 (R¹ = NHCH₃;R² = H). (298) Analogous reaction of 6-chloropurine with NaH in CH₃CN followed by 344 gives ~ 70% of 347 (R¹ = Cl;R² = H) as well as the corresponding α anomer 348 and minor amounts of the *N*⁷ anomers. (393)

7. Miscellaneous Methods

7.1. Alternative SilyI-Hilbert-Johnson Procedures

7.1.1. Catalysis by Alkali Halides

A patent describes the smooth reaction of 2-acetoxytetrahydrofuran 349 with silylated 5-fluorouracil 187 in the presence of sodium iodide to give via 350 the anticancer drug Ftafur® 351 in 95% yield. (394) In the analogous reaction of the stable standard sugar 18 with silylated uracil 66 much more drastic reaction conditions are required to afford the *O*-benzoylated uridine 72 in ~ 60% yield via 35. (395)

It should be realized, however, that condensation of the reactive sugar intermediates **350** and **35** (iodide counterion) with the silylated bases **187** and **66** generates trimethylsilyl iodide, which is an effective Friedel-Crafts catalyst in nucleoside synthesis. Subsequently, potassium iodide/dibenzo-18-crown-6 as catalyst was used in the reaction of the 2-deoxysugar **352** with the silylated bases

353 and **222** in acetonitrile:toluene (1:1) to give nucleosides **354** and **355** in 70–90% yield. (396) Nucleosides of secosugars were prepared analogously. (397, 398)

Silylated bases such as silylated thymine **226** or silylated guanine **353** react with the secosugar **159** in the presence of CsI in acetonitrile at reflux to afford **160** in 47% yield. (399, 400) In addition to NaI, KI, and CsI, CsCI is also effective in the reaction of 2-acetoxytetrahydrofuran (**349**) with silylated 5-fluorouracil **187**, furnishing **351** in 87% yield. (401)

7.1.2. Activation of 1-Sulfur Groups

Parallel to publications on the activation of protected alkyl 1-thio sugars by *N*-iodosuccinimide (NIS) (402) in the presence of catalytic amounts of trifluoromethanesulfonic acid (TfOH) for glycoside synthesis,

earlier studies showed that 1-phenylthiooxetane sugar derivative **356** reacts in CH_2Cl_2 with silylated N^6 -benzoyladenine (**97**) in the presence of N-bromosuccinimide (NBS) and molecular sieves (4 Å) to give oxetanocin intermediate **357** in 58% yield. (403) The 1-phenylthio derivatives are often prepared via protected 1-O-acyl derivatives employing trimethylsilylated thiophenol in the presence of BF₃·OEt₂ or TMSOTf. (410) Thus the question arises, why not use the protected 1-O-acyl or 1-O-alkyl sugars for nucleoside synthesis instead of the corresponding 1-phenylthio sugars, which entail additional reaction steps and bad smelling thiophenols.

1- α -Phenylthiofuranoside **358a** reacts with silvlated thymine **226** via **359** in 70–98% overall yield to form predominantly the α -nucleoside **272**, whereas with the 5-*tert*-butyldimethylsilvloxy derivative **358b** an α / β ratio of **272/271** = 3:1 to 2:1 is obtained. (404) The 2-deoxyxylofuranosyl derivatives **360** afford with **226** a ratio of **361/362** = 1:12 – 1:30 from benzylidene **360b** and isopropylidene derivative **360c** in the presence of molecular sieves. In

contrast, the 5¢-O-acetyl or O-benzoyl derivatives **360a** give α / β ratios of 1:1.5–1:2. (404a,405)

For further studies with

1-phenylthio-5-O-(*tert*-butyldiphenylsilyl)-2,3-dideoxyribofuranosyl derivatives, see Ref. (406). The D-arabinosyl derivative **363** affords predominantly the β -nucleoside **364** (91%) as well as some α -nucleoside **365** (**364**:**365** = 9:1) with **226** with NBS in CHCl₃. (407)

2,3,5-Tri-*O*-acetyl-1-phenylthio-D-ribofuranose (**366**) gives with NIS/ CF₃SO₃H 56% of tri-*O*-acetyluridine (**368**) and, via **367**, 6% of the 2¢-iodoacetyl derivative **369**, whereas silylated N^4 -acetyl cytosine **277** affords 81% of

tetraacetylcytidine. (408) For analogous reactions of 1-phenylthio-2,3,4,6-tetra-*O*-acetylglucopyranose with persilylated 2-*N*-acetyl-6-chloropurine, see Refs. 408a, 409.

On oxidation of 1-phenylthio derivatives, which are readily available from the protected 1-*O*-methylsugars with thiophenol/BF₃·OEt₂, (411) with *m*-chloroperbenzoic acid one obtains the corresponding sulfoxides such as **370**. Treatment of these 1-sulfoxides with TMSOTf results in a Pummerer reaction that affords sugar cations such as **67**. Subsequent reaction with silylated bases provides the corresponding protected nucleosides in high yields. (412)

Displacement of the 1 α -methylthio group in **371** by the 9-chloromercuric salt **372** of N^6 -benzoyladenine affords via an S_N2 reaction the 5¢-O-benzyl ether of 2¢-deoxy-*N*-benzoyladenosine **373** in 20% yield, as well as 28% of the corresponding α anomer. (413)

The related Pummerer reaction of tetramethylene sulfoxide **374** with TMSOTf generates the electrophilic cation **375**, which reacts readily with silylated thymine **226** generated in sit u from thymine to give the tetrahydrothiophene nucleoside **376**

in 84% yield. (414) For other recent Pummerer reactions, see Ref. 414a-414l, and for reviews on 4'-thionucleosides, see Ref. 414m, n.

7.1.3. Alternative Formation of 1-Sugar Cations

It was previously emphasized that any method that yields 1-sugar cations as intermediates is potentially useful for the synthesis of nucleosides or glycosides (and vice versa). Thus 4-pentenylgly-cosides **377** are converted by soft electrophiles such as NIS, IDCP, or NBS (415-419) in combination with a Lewis acid such as CF₃SO₃H or Et₃SiOSO₂CF₃ via **378** to the reactive sugar cations **379** and 2-iodomethyltetrahydrofuran **380**. In acetonitrile products of a Ritter reaction (199-204) between **379** and acetonitrile can be observed. (420)

Reaction of glycoside **381** with 6-chloropurine (**42**) and iodonium reagents affords (apparently kinetically controlled) a 91% yield of the N^{0} - and N^{7} -nucleosides **43** and **44** as well as the corresponding α anomers, whereas **382** furnishes only **383** in 60% yield. (**421**)

Transformation of the substituted dihydrofuran **384** with phenylsulfenyl chloride gives intermediate **385**, which affords with **277** in the presence of SnCl₄ or TMSOTf predominantly the β -nucleoside **386** in 60–65% yield. Since the soft sulfur in **385** complexes better with SnCl₄ than with the hard TMSOTf, SnCl₄ gives a β / α ratio of 18:1, whereas TMSOTf leads to a β / α ratio of only 6:1. (421a,b)

For analogous reactions with phenylselenyl chloride or *N*-iodosuccinimide, see Refs. 421c and 422.

Reaction of dihydrofuran **387a** or dihydropyran **387b** with *N*-fluoropyridinium triflate (**388**) in CH_2Cl_2 produces 2-fluoro-1-pyridinium triflates **389**, which react with silylated 5-fluorouracil **187** in DMF at 120° to give a 3:2 mixture of **390** and **391** in 50–60% yield. (422)

lodination of dihydrofuran 392 with NIS in acetic acid produces a 14:1 mixture of iodoacetate 393 and its 1,2-epimer, which are reacted without purification with silylated N^6 -benzoyladenine (97) in the presence of SnCl₄ to give the adenosine analog 394 in 45% overall yield. (423) Analogous iodination of 392 in the presence of silylated thymine 226 in CH₂Cl₂ furnishes the thymidine analog 395.

Treatment of **395** with DBU affords the corresponding 2,2¢-anhydronucleoside **396** (52%), which is transformed by potassium *tert*-butoxide in 82% yield into 2¢,3¢-didehydronucleoside **397**. (423) For analogous reactions of **392** with PhSeCI, see Ref. 423a, b.

7.1.4. Variations of the Hilbert-Johnson Reaction

A patent claims the superiority of N, O-acylated cytosines compared to the corresponding silylated cytosines, since the N, O-acylated cytosines are not moisture labile. (424)

On acylation of cytosine with benzoyl chloride/triethylamine in 1,2-dichloroethane, cooling to 10° and filtering the precipitated triethylamine hydrochloride, the filtrate contains 2,4-di-*O*,*N*-benzoy lcytosine (**398**) or 2,4,4-tri-*O*,*N*-benzoyl cytosine (**399**), both of which can be isolated in crystalline form or reacted as a

mixture in situ with **17** in the presence of TiCl₄, TMSOTf, or SnCl₄ to give on workup and saponification free cytidine in up to 90% yield. (424) Other publications describe, however, that during benzoylation of pyrimidine bases with benzoyl chloride-pyridine, the N^1 , N^3 -dibenzoylpyrimidines are obtained predominantly. (425,425a–c)

One should realize, however, that in nucleoside synthesis the cost of the silvlation of the heterocycles is minute compared to the preparation of the sugar synthons or special heterocyclic bases.

Heating of **400a** and **400b** with bis(tributyltin)oxide in benzene with removal of water gives 2,4-bis(tributylstannyloxy)-5-bromopyrimidine (**401a**) or 2-tributylstannyloxy-5-bromopyrimidine (**401b**), which react readily with the standard sugar **18** in the presence of SnCl₄ or with reactive α -haloethers such as benzyloxymethyl chloride under mild conditions to afford 85–97% of the corresponding nucleoside **402a** (426) or the nucleoside analog **402b**. (427)

Although these alternatives to the Silyl-Hilbert-Johnson reaction seem to be effective, the environmental problems connected with the large-scale use of expensive and toxic tin compounds may restrict their use to special cases.

8. Alternative Nucleoside-Forming Reactions

8.1. Nucleoside Synthesis with Protected 1-Hydroxysugars

Protected 1-hydroxysugars such as **403** can be activated by *N*-methyl-2-fluoropyridinium tosylate (**404**) to **405**, which reacts with silylated heterocycles such as silylated thymine **226** or 5,6-benzimidazole (**407**) to give primarily the α -nucleosides ($\alpha / \beta = 98:2-8:2$) **406** and **408** in 71 and 82% yield, respectively. (**428**) Activation of theobromine (**409**) with **410** followed by reaction with triethyloxonium tetrafluoroborate gives **411**, which on addition of **412** affords N^7 -nucleoside **413** in 93% yield. (**429**)

Activation of protected 1-hydroxysugars under Mitsunobu conditions permits the reaction of glucopyranose **414** with **42** to give nucleoside **415** in 66% yield, (430) whereas Mitsunobu coupling of difluororibose **416** with **25** affords 50% of a 1:1 anomeric mixture of **417** and **418**. (431) The 1-*O*-mesylate **276**, however, reacts smoothly with silylated cytosine in the presence of TMSOTf to give 2 -deoxy-2 ,2 -difluorocytidines **278** and **279** in high yield (Eq .97, p. 57). Likewise, the

fructose derivative **419** analogously furnishes with **42** an α / β anomeric mixture of nucleosides **420** and **421** in 32% yield. (432) For recent applications of the Mitsunobu reaction, see Refs. **432a**–h.

Related to the Mitsunobu reaction, which gives rise to activated 1-O-triphenylphosphonium intermediates, reaction of 2,3-O-isopropylidene-D-ribofuranose 422 with 2-fluorophenyl phosphorodichloridate 423 affords the activated cyclic 1,5-arylphosphate intermediate 424. Reaction of 424 with Sn(II) derivatives of heterocyclic bases such as 5,6-dimethylbenzimidazole 425 furnishes the α -nucleoside 426 in 81% yield, whereas the analogous derivative of 6-(1-piperidino)purine affords only 30% of the corresponding α -purine nucleoside. Tin derivatives such as **425** are prepared by treatment of the heterocyclic bases with butyllithium followed by SnBr₂. (433)

Radical rearrangement of

3,5-di-O-benzoyl-2-O-(diphenylphosphoryl)-D-ribofuranosyl bromide (427) with tributyltin hydride affords the sensitive activated α -D-ribofuranose 428, which reacts with N^6 -benzoyladenine to give 42% of a 1:1 mixture of the anomeric nucleosides 429 and 430. (434)

Following the pioneering studies by E. Fischer (435) in 1909 on the activation of 1-hydroxysugars with P_4O_{10} , G. Schramm (436) and other investigators (437-439) studied the reactions of protected 1-hydroxysugars with P_4O_{10} in DMF or CHCl₃. Thus D-glucopyranose **412** condenses with N^6 -benzoyladenine (**137**) with P_4O_{10} in DMF to give after ion-exchange chromatography 9- β -D-glucopyranosyladenine (**431**) in 10% yield. (437) Condensations of purines with 2-deoxy-D-ribose in the presence of P_4O_{10}/Bu_3N give rise to 2,3-dideoxy-3-purine-substituted *C*-nucleosides. (**438**, **439**)

Reaction of Ferrier intermediate **432** with adenine or uracil in the presence of Pd(dba)₃ and bis-1,4-(diphenylphosphino)butane (dppb) in THF furnishes α -nucleosides **433** and **434** in 80% and 36% yield, respectively. (440) For analogous reactions with furanoses, cf Ref. (440a).

8.2. Construction of the Heterocyclic Base to Unsaturated Systems Treatment of D-ribose with methanolic ammonia gives 90% of D-ribopyranosylamine 435, which is converted by 2,2-dimethoxypropane, acetone, and *p*-toluenesulfonic acid into the crystalline D-ribofuranosylamine tosylate 436 in 80% yield. (441) Reaction of 436 with ethyl *N*-(α -cyano- β -ethoxyacryloyl)carbamate

437 furnishes an anomeric mixture of 8% of the β anomer **438** and 15% of the α anomer **439**. Analogous reaction of **436** with ethyl formimidate hydrochloride followed by heating with ethyl α -amino- α -cyanoacetate affords 37% of the β anomer **440** as well as the α anomer **441**. (441) For an analogous reaction of 1-amino-2-deoxy-2- α -fluoro-3,5-di-O-benzoylribose with a derivative of ethyl 2-aminocyanoacetate, see Ref. **442**.

Condensation of 436 with

N,N -(benzyloxycarbonyl)ethoxymethylenemalonamide (442) furnishes 57% of the β anomer 443 and 15% of the α anomer 444. (443) On using 3-methoxy-2-methacryloyl isocyanate (446), 445 is converted into the thymidine analog 447 in 88% yield. (444) See also the reaction of protected 1-isocyanatosugars. (445)

Treatment of β -D-glucopyranosylamine hydrobromide **448** with thiophosgene affords an intermediate 1-isothiocyanate, which condenses with aminoacetone hydrochloride to the nucleoside **449**. (446) Reaction of D-ribofuranosylhydrazine **450** with ketenethioacetal **451** furnishes the pyrazole nucleoside **452** in 62% yield, (447, 448) whereas the protected hydrazine derivative **453** gives with thiouronium salt **454** 23% of mesoionic β anomer **455** and 7% of α anomer **456**. (449) For analogous cycloadditions of protected 1-azidosugars, see Ref. **450**.

The easily accessible protected E/Z mixture of 1-oximes 457 reacts with formaldehyde and methyl methacrylate (459) to give via 458 a mixture of the stereoisomers 460 in good yield. (451, 452)

The condensation of the 6-aminopyrimidin-4-one **461** with glucose to yield **462** followed by nitrosation and reduction affords intermediate **463**, (453, 454) which is converted by formamidine acetate (454) to the corresponding purine nucleoside or with nitrous acid to the corresponding 8-azapurine nucleoside. It
should be emphasized, however, that silvlated amino heterocycles such as **464** react with ribose derivative **18** in the presence of TMSOTf in acetonitrile to give adenosine precursor **465** in 72% yield. (455)

Furthermore, D-fructose (341) condenses with KSCN in aqueous HCl followed by treatment with triphenylmethyl chloride in pyridine to afford a 1:1 mixture of 466 and 467 in high yield. Desulfurization of the mixture of 466 and 467 with Raney Nickel and subsequent reaction with α -amino- α -cyanoacetamide followed

by triethyl orthoformate/acetic anhydride gives a good yield of hypoxanthine nucleoside **468**. (455a)

8.3. Conjugate Additions of Heterocyclic Bases to Unsaturated Systems Two recent examples of such conjugate additions may suffice. Purines **469** react with methyl acrylate in the presence of K_2CO_3 in DMF to give the corresponding N^9 -Michael adduct **471** and small amounts of the N^7 -adduct **472** in 85% yield. (456) Ethyl 2-bromoethylenemalonate (**473**) affords the substituted cyclopropanes **474** and **475** in an 8:1 ratio in 87% yield. (456) For additional examples, see Refs. 457–460,460a.

8.4. Enzymatic Transglycosylations

Uridine phosphorylase (EC 2.4.2.3) or thymidine phosphorylase (EC 2.4.2.4) degrades uridine, 1- β -D-arabinofuranosyluracil (ara-U) (476) as well as thymidine (477) in the presence of phosphate to the corresponding pentose-1-phosphates 478, 479 and 480, which are transformed in situ by added purines 303 and purine nucleoside phosphorylase (EC 2.4.2.1) to the corresponding purine nucleosides 109, 305, and 481. The application of all these methods in the synthesis of antiviral agents has been reviewed recently. (461)

Whereas normal purine nucleosides can be readily synthesized with SnCl₄ or TMSOTf as catalyst, enzymatic methodology also permits the synthesis of imidazo[4,5-*c*]pyridine nucleosides (i.e., 3-deazapurine nucleosides). (462) Of particular interest is the transglycosylation of ara-U **476**, (463-467) which is readily available from uridine via 2,2'-anhydrouridine, to give arapurine nucleosides **305**, since these nucleosides are accessible in only moderate yields by chemical synthesis. Equally important are the transglycosylations of thymidine **477** with bases such as 6-dimethylaminopurine to give the corresponding 2'-deoxypurine nucleoside **481** (R¹ = N(CH₃)₂;R² = H) in 81% yield. (468)

The combination of thymidine phosphorylase and purine nucleoside phosphorylase from *E. coli* (468, 469) can also be used to transform 2'-deoxy-2'-fluorouridine (470-472) (482) or 2',3'-deoxy-3'-fluorothymidine (271b) (473) with purines 303 to the corresponding purine nucleosides 483 and 484.

Enzyme preparations from *Erwinia herbicola* permit the similar transformation of 2'-deoxy-2'-aminouridine (**485**) with 2-chlorohypoxanthine to **486** in 32% yield. (**474**, **475**)

Interestingly, purine nucleosides can also be used as sources of pentose-1-phosphates. Thus inosine (**487**) can be transformed by a purine nucleoside phosphorylase from *Enterobacter aerogenes* (**476**) in the presence of 1,2,4-triazole-3-carboxamide (**488**) to virazole (**489**). (**477**)

The enzymatic phosphorolysis of purine nucleosides such as inosine (487) or guanosine can be made irreversible and thus much more efficient by methylation of the $N^{\vec{l}}$ -nitrogen in 487 or 5 to afford in the presence of 1,2,4-triazole-3-carboxamide (488) 44% of virazole (489) or with 3-deazaadenine 53% of 3-deazaadenosine. (478)

In earlier studies, the enzyme nucleoside 2 -deoxyribosyltransferase (EC 2.4.2.6) from *Lactobacillus leichmannii* was used to catalyze large-scale transglycosylation reactions of excess thymidine (477) with 4-aminopyrazolo[3,4-*d*]-pyrimidine (490) to 491 in 83% yield. (479) See also an analogous reaction with 6-dimethylaminopurine. (480) Excess 2 -deoxycytidine (492) and 6-thioguanine (493) or 6-azathymine (495) afford 494 and 496 in 67% and 21% yield, respectively. (479) The same enzyme system permits the preparation of a series of substituted 2 -deoxypurine nucleosides as well as of 1-deazapurine nucleosides. (481, 482) Other bases used for enzymatic transglycosylations are benzimidazole and 5-aminoimidazole-4-carboxamide. (481, 483)

The nucleoside deoxyribosyltransferase II from *Lactobacillus leichmannii* also effects the transfer of the 2',3'-dideoxyribose moiety from 2',3'-dideoxycytidine (497a) to purine bases such as 6-dimethylaminopurine (498) to give 499 in 78% yield (484, 485) and other bases such as

4-aminopyrazolo[3,4-*d*]pyrimidine (**490**) (484) to give **500**, whereas 6-alkoxypurines react with 3'-deoxythymidines in the presence of thymidine and purine phosphorylases to give the corresponding 6-alkoxypurine nucleosides. (486) Further, purine bases such as 1,7-dimethylguanine can also be used. (487) The analogous transglycosylation of 2',3'-dideoxycytidine **497a**, 2',3'-dideoxyuridine **497b**, or 2',3'-dideoxythymidine **497c** with adenine (**2**) to 2 ,3 -dideoxyadenosine **501** in 71% yield can also be catalyzed by transferase enzymes from *E. coli* (488-491) or *Lactobacillus helveticus*. (492) Starting from the easily accessible uracil or cytosine arabinosides **300**, analogous enzymatic transglycosylations with a variety of purines such as **498** or 2-fluoro-6-aminopurine proceed in up to 60% yield. (382-382a)

Although the preparation of these transferase enzymes is quite elaborate, once an enzyme preparation is isolated, it becomes possible to transfer the 2'-deoxyribose moiety of thymidine (477) or the 2',3'-dideoxyribose moiety in 2',3'-dideoxyuridine (497b) to a series of other bases without the formation of unnatural (and usually biologically inactive) α -nucleosides. Furthermore, modern techniques of attaching enzymes to polymers permit the extensive reuse of these polymeric enzymes. (492a) (For a review on enzyme catalysis, see Ref. 493.)

9. Experimental Conditions

9.1. Sugar Moieties

The crystalline and commercially available sugar moieties such as 18 (mp 133–134°), 17 (mp 81–83°), 24 (mp 110–112°), and 23 (mp 130–132°) as well as 2,3,5-tri-O-benzyl-1-O-4-nitrobenzoyl-D-arabinofuranose (mp 89–91°) should be checked (mp, TLC) and carefully powdered and dried for 4-18 hours at 40–50°/0.1 mm to remove the last traces of solvent or acetic acid, which can interfere with nucleoside synthesis. If necessary, the crystalline sugar moieties should be recrystallized from methanol and dried subsequently. Sugar 18 should usually be preferred to 17, since cyclic salts such as 67 with a phenyl substituent are much more stable than those with a methyl substituent as in 27. Consequently, the thermodynamically controlled formation of O-acylated β -nucleosides is more favored with 18. Furthermore O-benzoylated nucleosides usually crystallize much better than the corresponding O-acetylated nucleosides. The precious and sensitive 21 gives on recrystallization from anhydrous CCl_4 (100 mL/g) fine colorless needles, which can apparently be stored in a desiccator for months. (494) A new preparation of 1,3,5-tri-O-acetyl-2-deoxy-D-ribofuranose was recently described. (495)

On reacting 1-O-acyl-2-O-benzylated D-ribose **502** with SnCl₄ in the absence of nucleophilic silylated bases, the resulting 1-cation can undergo a Friedel-Crafts cyclization with the ortho position of the 2-O-benzyl group to form the corresponding tricyclic sugar derivative **503** (496-496a) (for other side reactions of sugar moieties in the presence of Lewis acids see Refs. 152b,152c and 256).

9.2. Heterocycles

Whereas *N*-heterocycles such as uracil , thymine, or hypoxanthine are silylated as such and then transformed into the corresponding nucleosides, aminosubstituted heterocycles such as cytosine, adenine, or guanine are much more basic so that the silylated amino-substituted bases form stronger σ complexes with Lewis acid catalysts such as TMSOTf or SnCl₄ and thus react more slowly or not at all with sugar moieties than do silylated uracil or thymine.

Consequently, the less basic N-acylated heterocycles such as N^4 -acetyl (or benzoyl)cytosine, (497) N⁶-benzoyladenine (mp 243°), (498) or the commercially available (Pharma Waldhof) N²-acetyl (or N²-isobutyryl)guanine should usually be preferred since they are also more lipophilic and thus more easily converted to their corresponding silvlated derivatives (97), 108b, and **277**, which then form weaker σ complexes with Lewis acids with resulting faster reactions to the desired nucleosides. To enhance the solubility even further, silvlated N^2 -palmitoylguanine has been employed for transglycosylations (180) instead of silvlated N^2 -acetyl (or N^2 -isobutyryl)guanine. Recently it was observed that 1-O-methyl-2-deoxypyranosides condense readily with silvlated uracil (66) or thymine (226) but fail to react with silvlated cytosine 222 in the presence of *tert*-butyldimethylsilyl triflate in CH_2CI_2 /acetonitrile. (236) One can assume that, owing to strong σ -complex formation of the basic silvlated cytosine 222 with tert-butyldimethylsilyl triflate, the reaction of 222 with the intermediate sugar cation was so slow that the sugar cation was converted into the corresponding glycal. (152b,c,236) In the synthesis of hikizimycin, silylated cytosine (222) reacts only sluggishly in the presence of TMSOTf. (160) On working with such sensitive 2-deoxysugar moieties, the less basic N-acylated aminoheterocycles should always be employed using not only N-acetyl or benzoyl substituents but also N-p-nitrobenzoyl or N-trifluoroacetyl groups. The purification of crude heterocycles by silvlation and subsequent distillation is briefly discussed in the following section on silvlation.

9.3. Silylation

The polar, high melting and rather insoluble heterocyclic bases such as uracil, thymine, N^4 -acetyl cytosine, N^6 -benzovladenine, N^2 -acetylguanine, or N^2 -isobutyrylguanine are transformed on silvlation into thermodynamically more stable (78a) lipophilic, basic, and nonpolar volatile silvl derivatives, which are thermally stable but very sensitive to moisture. Of the different silulating agents, HMDS, bp 126° is the most practical and commonly used since only ammonia is evolved on silvlation, and excess reagent can be readily removed by evaporation and repeated codistillation with xylene. Even more effective is subsequent Kugelrohr (short path) distillation to give the pure silylated base. With 5-fluorocytosine, the silvlated heterocycle was distilled and then recrystallized from heptane. (499) On silvlation, distillation and subsequent desilylation with excess water or methanol, crude heterocyclic bases such as adenine can be readily purified. (500) The relatively low rate of silulation with HMDS is accelerated by adding catalytic amounts of acidic catalysts such as (NH₄)₂SO₄, TMSCI, or TMSOTf, whereupon ammonium salts such as NH₄CI will show up in the reflux condenser as well as in the distilled silvlated base as a turbid impurity. On silulation of N^4 -acetyl cytosine or N^6 -benzoyladenine with HMDS in pyridine or in the presence of catalytic amounts of TMSCI, part of the N-acyl groups can be lost. (146) Thus samples of silylated N-acylated bases

should be treated with methanol and subsequently checked by TLC for the potential loss of part of the *N*-acyl groups.

Very insoluble heterocyclic bases such as certain purines can often be silylated only by adding pyridine. Thus if a heterocyclic base does not dissolve after extended heating with HMDS containing catalytic amounts of TMSCI, a polar solvent such as acetonitrile or pyridine should be added, which can then be removed on codistillation with xylene. Other polar solvents such as DMF or *N*-methylpyrrolidone should also be considered as solvents for the silylation of very insoluble heterocyclic bases and the subsequent reaction with protected sugar derivatives such as **18** in the presence of Friedel-Crafts catalysts (see Solvents). (84) It should be realized, however, that DMF and probably also *N*-methylpyrrolidone can react with TMSCI at elevated temperatures (see Solvents).

The Langer method of silylation, employing equimolar amounts of HMDS and TMSCI, (501) is also very efficient and quite fast, particularly in acetonitrile at room temperature. The equivalent amounts of NH₄Cl formed are precipitated indicating the progress of silylation. (146) Subsequent filtration of the NH₄Cl with exclusion of moisture and washing with acetonitrile will remove practically all of the NH₄Cl . On Langer silylations in acetonitrile at reflux, the NH₄Cl sublimes nearly quantitatively into the reflux condenser and is thus removed from the reaction. (146) The Langer method transforms *N*-acylated purines such as N^6 -benzoyladenine to the corresponding silylated bases such as 97 with minimal cleavage of the corresponding *N*-acyl groups. (146) Thus silylation of N^2 -acetylguanine (303b) with HMDS and equivalent amounts of TMSCI or TMSOTf gives the silylated N^2 -acetylguanine 108b and NH₄Cl (or ammonium triflate). Silylations with TMSOTf/triethylamine (502) or TMSOTf/DBU (503) have also been described.

Other silylating agents such as the more expensive BSA or BSTFA silylate heterocyclic bases much faster than HMDS and have thus been used rather frequently. (151,162,239,504–507) During silylation with these reagents, however, *N*-monosilylated or free acetamide or trifluoroacetamide is formed,

which can interfere with nucleoside synthesis by competing with persilylated bases for the sugar cation to form protected *N*-acetamides. This problem is particularly important in silylation and nucleoside synthesis in weakly basic systems, such as the preparation of silylated 2,3-diaminomaleodinitrile (DAMN, **130**) or silylated 4,6-diamino-5-nitropyrimidine **464**. Such a side reaction of BSA or *N*-trimethylsilylacetamide was recently observed on silylation of 1,2,4,6-thiatriazin-3-one 1,1-dioxides with BSA followed by reaction with peracylated sugars in the presence of TMSOTf in boiling acetonitrile, which gave only moderate yields of the protected nucleosides and up to 46% of the 1-*N*- β -acetamides of the protected sugars. (**162a**) Likewise, reaction of 1,3-bis(trimethylsilyl)-1,3,4,7-tetrahydro-2*H*-1,3-diazepin-2-one, prepared in situ with BSTFA, with

1-O-methyl-2,3-dideoxy-5-O-*p*-toluoyl-D-glyceropentofuranose in the presence of TMSOTf afforded the seconucleoside containing a 1-trifluoroacetamido group in 45% yield. (507a)

Whereas the structures of silylated uracil**66** or thymine **226** are unambiguous, the structures of the silylated N^4 -acyl groups in cytosine or the N^2 - and N^6 -acyl moieties in purines can be formulated as either *N*-silyl **504** or *O*-silyl **505**. (78a,142,508,509) The structure of persilylated N^6 -benzoyladenine was recently determined by NMR measurements as having one TMS group at N^9 and the other at the oxygen of the N^6 -benzoyl group as in **505**. (509a)

Although silvlated purines are usually formulated as the N^{θ} -silvlated isomer **108**, it might well be that besides the N^{θ} -silvlated purines **108** there are also small amounts of N^{τ} -silvlated purines **506** present at equilibrium, (78a,144) which might be the intermediates in the reaction with sugar cations **67** to result in the formation of the N^{θ} -nucleoside.

For a detailed UV, ¹H NMR and ¹³C NMR investigation of the structure of silylated allopurinol, see Ref. (510). Although the structure of the silylated diazepine was determined as **507** by ¹³C NMR, (511) the heterocycle probably reacts via **508** with sugar cations **67**. For determination of the structure of bis(silylated) 5-methyl-5,6-dihydro-*sym*-triazine-2,4(1*H*,3*H*)dione (**209**), see Ref. **238**. (For an alternative formulation of the bis(silylated) heterocycle see Ref. **512**.)

9.4. Friedel-Crafts Catalysts

Commercial SnCl₄ should be redistilled (bp 114°) with careful exclusion of moisture if the reagent has been stored, to avoid slow nucleoside synthesis or failures. TMSOTf, which can be readily prepared from trifluoromethanesulfonic acid by heating with trimethylsilyl chloride (TMSCl) (131) until HCl evolution ceases, or with tetramethylsilane (513) until methane evolution ceases, should also be redistilled (bp 133–134° or 77°/80 mm) with careful exclusion of moisture, if the reagent has been stored. Trimethylsilyl nonaflate (bp 70°/15 mm) is prepared in similar fashion from nonaflic acid or by in situ reaction of potassium nonaflate with TMSCl in acetonitrile. Other reagents, such as *tert*-butyldimethylsilyl triflate (bp 65–67°/12 mm), (514) are apparently equivalent to TMSOTf in nucleoside synthesis but much more expensive.

Other Friedel-Crafts catalysts such as $TiCl_4$, $BF_3 \cdot OEt_2$, or TMSI should be redistilled before use. Humid samples of $ZnCl_2$ or $SnCl_2$ or their hydrates can be dehydrated by refluxing with TMSCI, whereupon HCl and hexamethyldisiloxane (bp 101°) are formed. (514a) For comparisons of Friedel-Crafts catalysts in nucleoside synthesis, see Refs. 84,106b,249c, and 514b.

The amount of Friedel Crafts catalyst used depends on the basicity of the silylated base and the sugar (cf **510**) and usually does not exceed 1.2–1.4 equivalents of TMSOTf or SnCl₄. Recently it was claimed, however, that 10 equivalents of SnCl₄ were necessary for the reaction of 1,3,5-tri-O-acetyl-2-deoxy-D-ribofuranose with silylated

2-*N*-acetyl-6-*O*-diphenylcarbamoylguanine **113** for optimal yields of 2¢-deoxysugars. (515) But in this reaction BSA was used for silylation and it was not stated whether the SnCl₄ had been freshly distilled. Since 3,4- or 5-dialkoxyphosphonomethylribofuranosides are partially dealkylated at phosphorus on extended heating with persilylated bases in the presence of TMSOTf in acetonitrile, it is claimed that SnCl₄ gives higher yields of di-*O*-alkylated phosphonomethylnucleosides. (515a–d)

9.5. Solvents

Acetonitrile is the most commonly used low-boiling solvent (bp 82°) and is readily purified by heating at reflux over P_2O_5 , subsequent distillation, and then distillation over CaH₂. As emphasized in the preparation of protected 6-methyluridine **85**, any impurity will favor the formation of the undesired N^3 -nucleoside **86**. There are, however, some good commercial brands of absolute acetonitrile available such as from Merck AG Darmstadt, No. 100004 containing less than 0.005% H₂O, which can be used as such for nucleoside synthesis.

Owing to its polarity, acetonitrile permits homogeneous reactions of polar sugar moieties or silylated pyrimidine bases as well as of their corresponding salts. Acetonitrile also competes with silylated pyrimidine bases for the Lewis acids TMSOTf or SnCl₄ to form the corresponding σ complexes. Consequently, the most electron-rich N^1 -nitrogen in silylated pyrimidines is only partially blocked by complex formation with TMSOTf or SnCl₄, so that the nucleophilic N^1 -nitrogen can react with the sugar cation **67** to the desired protected natural N^1 -pyrimidine nucleosides. If, however, TMSOTf or SnCl₄ blocks most of the N^1 nitrogen of silylated pyrimidines by σ -complex formation, only the less basic and reactive N^3 nitrogen is available to condense with **67** to give the undesired protected N^3 -pyrimidine nucleosides.

The much less polar 1,2-dichloroethane, which is readily purified by distillation from P_2O_5 and permits reactions at the boiling point (83°), favors complex formation between the silylated purine moieties and TMSOTf so that the undesired protected N^3 - and N^7 -purine nucleosides are readily rearranged at 83° to the thermodynamically controlled desired protected natural N^9 -purine nucleosides. Since these rearrangements proceed via dissociation of the protected N^3 - and N^7 -purine nucleosides to the persilylated purine bases and the sugar cations, the more stable sugar cation 67 derived from sugar 18 (compared to the less stable sugar cation 27 derived from sugar 17) favors these dissociations and resulting rearrangements in 1,2-dichloroethane to the thermodynamically controlled N^9 -purine nucleosides. The even less polar toluene (compared to 1,2-dichloroethane) was employed for the rearrangement of the N^7 -purine nucleoside 509 to the N^9 -purine nucleoside 114. (141) It can furthermore be assumed that seconucleosides such as 132 or 332 will cyclize on extended heating with TMSOTf in boiling 1,2-dichloroethane

to the ring closed products **131** and **331**. (370) In contrast to these reactions and rearrangements in 1,2-dichloroethane and toluene at higher temperatures, silylated purine bases condense with sugar moieties such as **17** or **18** in acetonitrile in the presence of SnCl₄ at ambient temperature to give predominantly the undesired $N^{\vec{r}}$ -purine nucleosides. (142) See section on "Mechanism of Pyrimidine and Purine Nucleoside Synthesis."

Thus acetonitrile is the favored solvent for the TMSOTf or SnCl₄ catalyzed reaction of silylated pyrimidine bases with protected sugar moieties such as **18** to give the corresponding protected natural N^1 -pyrimidine nucleosides, whereas 1,2-dichloroethane is the preferred solvent for the TMSOTf catalyzed reaction of silylated purine bases with **18** to the protected N^9 -purine nucleosides.

Since the reaction temperature in methylene chloride can only be raised to 40°, this solvent is less suitable for the synthesis of purine nucleosides. Chloroform, which is the preferred solvent for the uncatalyzed, (261) Cul, (273) or ZnCl₂ (261) catalyzed Silyl-Hilbert-Johnson synthesis of protected 2ϕ -deoxynucleosides, should be freshly filtered over a small column of activated SiO₂ to remove the alcohol additives and water. Nitromethane, which should be dried with CaCl₂ and distilled (bp 101°), has been used as solvent for reactions of protected 1-halosugars with silylated bases in the presence of AgClO₄, (74, 80) with 2,4-dimethoxypyrimidine (150) without catalysts as well as with free bases in the presence of Hg(CN)₂. (516-518) Nitromethane is comparable to acetonitrile in the reaction of silylated 5-fluorouracil and 18 in the presence of SnCl₄, (518) as well as for the synthesis of hikizimycin (516). (160) For a recent reaction of 4-amino-3-iodopyrazolo[3,4-*d*]pyrimidine with 18 and BF₃·OEt₂ in nitromethane, see Ref. 519. Applications of the very polar solvents DMF or *N*-methylpyrrolidone are discussed at the end of this section.

Whereas the rate of the reaction of sugar cations such as **67** with silylated heterocyclic bases is apparently only slightly affected by the solvent, (519a) there are additional factors that can influence nucleoside synthesis.

Consequently, reactions of silylated pyrimidine bases in the presence of TMSOTf or SnCl₄ are often attempted in acetonitrile as well as in 1,2-dichloroethane or toluene, since some S_N2 reactions of protected D-arabinose **22** give much higher yields of the desired β -nucleosides in the nonpolar solvents 1,2-dichloroethane (359) and toluene. Likewise, the basic sugar moiety **510** reacts with silylated thymine **84** in 1,2-dichloroethane in the presence of excess TMSOTf to give 31% of the β -nucleoside **511** and 38% of the α -anomer **512**, whereas the same reaction in acetonitrile affords less than 5% of **511** and **512**. (520)

In the reaction of the basic triazine **209** with the standard 2-deoxy sugar **21**, acetonitrile is deemed to be the optimal solvent to obtain the desired protected β -nucleoside **513**: 1,2-dichloroethane and nitromethane give lower yields of **513** and more α -nucleoside **514**. (239)

Protected gemcytabine (278) is prepared by heating the sugar moiety 276 with

silylated N^4 -acetyl cytosine (277) in the presence of TMSOTf in 1,1,2-trichloroethane for 18 hours at 113°, whereas in xylene the reaction is complete after 3 hours at 125°. (303) In the synthesis of hikizimycin, the sugar moiety **515** reacts with excess silylated cytosine **222** and TMSOTf in nitrobenzene at 127° to furnish 76% of the protected nucleoside **516**. (160) This reaction, however, might succeed in boiling acetonitrile on employing the less basic silylated N^4 -acetyl cytosine **277** instead of **222**.

Silylated 6-chloro-2-acetylaminopurine (**517**) reacts with secosugar **518** at -30° in 1,2-dichloroethane to give after 2 hours the N^7 -nucleoside **520** in 58% yield as well as ca. 6% of the N^9 -nucleoside **519**, whereas 6-chloro- N^2 , N^9 -diacetylpurine affords with secosugar **518** in *N*-methylpyrrolidone or DMF in the presence of BF₃·OEt₂ or SnCl₄ after 4 hours at 100° 58% of the desired N^9 -nucleoside **519**. (521) Longer exposure or heating with TMSOTf in 1,2-dichloroethane

might presumably result in the preferential formation of **519**. For recent reviews on the synthesis of seconucleosides such as **160** or **519**, see Refs. **521b**–d.

Reaction of neat 1- α

-bromo-2-deoxy-2-fluoro-3,5-di-O-benzoyl-4-thio-D-arabinofuranoside with neat silylated N^4 -acetyl cytosine (277) for 8 hours at 80° affords the corresponding protected β -cytidine analog in 33% yield besides 8% of the α -anomer, whereas the same reaction for 48 hours at 80° in 1,2-dichloroethane did not give any nucleoside. (521e)

Possible side reactions of solvents, such as Ritter reactions (199-204) of sugar cations with acetonitrile, should always be considered. Likewise, the very polar solvent DMF (84,86,90,312b,521a) reacts on extended heating with TMSCI to give vinylogous amidinium salts and hexamethyldisiloxane. (522) Finally, one should be aware that 1,2-dichloroethane is carcinogenic to rats and mice at high doses (523) and should therefore only be used in a well ventilated hood. Acetonitrile is likewise considered a toxic hazard (523) and should therefore also be handled with care.

For a general review on the influence of solvents on reactivity, see Ref. (523a).

9.6. Workup of Friedel-Crafts-Catalyzed Silyl-Hilbert-Johnson Reactions TMSOTf or trimethylsilyl nonaflate are converted on aqueous workup with ice-cold saturated sodium bicarbonate solution into the corresponding sodium salts, which are water soluble and do not interfere with the subsequent extraction of the aqueous phase with CH₂Cl₂. On employing potassium bicarbonate (or carbonate), crystalline potassium nonaflate can be recovered on concentration of the aqueous solution for reuse in the one step-one pot nucleoside synthesis. In contrast to the use of TMSOTf or nonaflate, the workup of reactions employing SnCl₄ (or TiCl₄) with ice-cold aqueous sodium bicarbonate usually gives rise to emulsions, which are often difficult to extract with CH₂Cl₂. In these cases, the crude reaction mixture should be filtered through a layer of Celite (or Kieselguhr) to remove the insoluble tin salts, which should be washed thoroughly with CH₂Cl₂. The combined filtrates can then be separated and the aqueous phase extracted with additional volumes of CH₂Cl₂. In certain cases the precipitated tin salts obtained on workup with ethanol/aqueous NaHCO₃ solution were subsequently extracted with CH₂Cl₂ in a Sohxlet extractor to avoid any loss of precious substance. (524)

If the SnCl₄-catalyzed reactions are run in 1,2-dichloroethane, addition of equivalent amounts of pyridine leads to a colorless precipitate of a pyridine-SnCl₄ σ complex, which can be readily filtered through a layer of Celite and washed with 1,2-dichloroethane or CH₂Cl₂. The subsequent workup with ice-cold NaHCO₃- CH₂Cl₂ proceeds without complications. (525, 526) Other authors have added an ethanolic solution of triethylamine to the reaction mixture of SnCl₄ in 1,2-dichloroethane and then evaporated the volatile fraction. The resulting syrup was stirred in chloroform and evaporated with silica gel, which was then placed on top of a silica gel column for subsequent chromatography. (527, 528) For the synthesis of very acid-sensitive 2-oxo-6-chloropurine nucleosides employing TMSOTf in CH₂Cl₂, pyridine was added to quench the Lewis acid before chromatography on silica. (523b,c)

9.7. Removal of O-Acyl, N-Acyl, O-Benzyl, or O-Silyl Protecting Groups After nucleoside bond formation, workup and crystallization or chromatography followed by crystallization (if they crystallize), the O-acyl, *N*-acyl, O-benzyl, or O-silyl groups are normally removed. O-Benzyl groups can be removed by BCl₃ (66,344,349) or BBr₃ (256) at – 78°, by sodium in liquid ammonia, (343) or by hydrogenation. (68, 341) O-Silyl groups are usually cleared by treatment with TBAF in tetrahydrofuran, (339, 529) by triethylamine hydrofluoride, by pyridine hydrofluoride, or by treatment with trifluoroacetic acid. (68) For a review of the removal of silyl groups, see Ref. 529a.

The most common procedure used for the removal of *O*- and *N*-acyl groups is transesterification-saponification with saturated methanolic ammonia. On saponification of a protected nucleoside with methanolic ammonia, the progress of the saponification can be followed by TLC or HPLC, whereupon the heterocyclic chromophore can be detected by UV light and the sugar moiety by spraying with 10% H_2SO_4 in ethanol and subsequent heating to 140° to induce darkening of spots containing the carbohydrate moiety. After 72 hours at 24° normally all the *O*- and *N*-acyl groups are removed to give the free nucleoside, which can be checked for purity on SiO₂-TLC plates using the upper phase of *n*-butanol/acetic acid/ H_2O (4:1:5) (81) or by RP-HPLC.

In addition to the commonly used methanolic (or ethanolic) ammonia, methylamine, diisopropylamine, triethylamine, and hydrazine have also been employed. (221,298,409,475,530–532) Saponification of $6-(2\phi,3\phi,5\phi-tri-O-acetyl-\beta$

-D-ribofuranosyl)-6-aza-5,6-dihydro-5,5-dimethyluracil with methanolic ammonia leads to rearrangement of the sugar moiety and gives 6-(β -D-ribopyranosyl)-6-aza-5,6-dihydro-5,5-dimethyluracil. (533)

However, saponification-transesterification with methanolic ammonia can sometimes be quite slow so that even after 72 hours/24° *O*-acylated nucleosides can still be detected by TLC. In the case of $2\phi, 3\phi, 5\phi$ -tri-*O*-benzoyl-5-fluorocytidine, the ion exchanger Amberlyst A-26 (OH⁻ form) in methanol was used to effect a more rapid removal of the *O*-benzoyl groups. (534) Compare also the analogous saponification-transesterification of *O*-acetyl groups with IRA-400 (OH⁻ form) in methanol. (535) The saponification-transesterification of *O*-acetyl or *O*-benzoyl groups in nucleosides with NaHCO₃, Na₂CO₃, or K₂CO₃ in absolute methanol at – 50° was recently suggested. (536-536a) Alternatively, ZnBr₂ in chloroform-methanol removes *N*-acyl groups selectively, (536b) whereas lipases selectively saponify *O*-acyl groups. (536c)

After completion of the saponification-transesterification, the methanolic (ethanolic) ammonia (methylamine, diisopropylamine) is evaporated in vacuo. In the case of *O*-benzoyl, 4-nitro, 4-chloro, or 4-methylbenzoyl groups the rates of the saponification-transesterification differ, and the crude product contains the corresponding methyl (or ethyl) benzoates, as well as the corresponding amides, which can be readily extracted with diethyl ether or methyl *tert*-butyl ether.

On using hydrazine benzoate or hydroxylamine acetate in pyridine the more acidic 2ϕ -O-acetates or benzoates can be selectively cleaved to give, with adenosine- 2ϕ , 3ϕ , 5ϕ -tri-O-benzoate, a 74% yield of adenosine- 3ϕ , 5ϕ -di-O-benzoate. (328, 329, 532, 537) Heating with hydrazine to 100° leads to rapid removal of all O-acyl groups. (475)

The standard procedure with methanolic ammonia fails, however, with 5-nitrouridine-tri-*O*-benzoate, (538) which apparently decomposes via addition of NH₃ to the 6-position and subsequent ring opening. Sodium methylate in methanol, however, gives a high yield of 5-nitrouridine. (538-538a) Ammonia and primary or secondary amines in methanol (or ethanol) can aminate (or methoxylate) a 2-chloro or 2-fluoro group, (475, 539) and under forcing conditions, a 6-chloro-, (298) 6-bromo-, or 6-fluoro group in purine nucleosides as well as a 6-fluoro group (540) in pyrimidine nucleosides, whereas NaOH in

methanol-H₂O will introduce a methoxy group. (539) Likewise, a 5-trifluoromethyl group in pyrimidine nucleosides is transformed into the corresponding ester moiety, (268) whereas a 5-iodo substituent in a uracilmoiety can be displaced by ethanolic methylamine after 20 hours at 20°. (530) Heating 2-chlorohypoxanthine nucleosides for only 5 minutes at 100° with hydrazine hydrate replaces the chloro group by a hydrazino group. (475) Ester groups react with methanolic ammonia to give the corresponding amide groups as in the synthesis of virazole (489) (133, 259) and 186. 5-Ethoxycarbonyluridine-2',3',5'-tri-*O*-acetate is also converted into 5-aminocarbonyluridine by methanolic ammonia. (541) It is of interest that cytidine catalyzes the aminolysis of esters by *n*-butylamine by stabilizing the tetrahedral transition state of aminolysis. (542)

When sodium methylate in methanol is used, treatment of the crude reaction mixture with CO_2 or filtration over a column of Dowex 50 (H⁺ form) will neutralize the reaction mixture. The ion exchanger will also remove the sodium ions. On using the sodium methylate/methanol or the sodium benzyl oxide/benzyl alcohol procedure, reactive halogens as in 5,6-dichloropyridazin-3-one (543) or analogous nucleosides (544) are replaced by methoxy or benzyloxy groups.

Since the 2-fluorine moiety in 3',5'-di-O-acyl-2,2'-difluoroadenosine **347** ($R^1 = NH_2$; $R^2 = F$) is readily aminated by methanolic ammonia, the more selective saponification of the *O*-acyl groups with lithium hydroxide in acetonitrile-H₂O was applied to afford the free nucleoside in 59% yield. (539) *O*-Benzoylated ribosides of barbituric acid can only be saponified without cleavage of the nucleoside bond by using a very dilute solution of sodium methylate in methanol. (544)

In contrast to methanolic ammonia, saponification with 0.2 N NaOH in THF/MeOH/H₂O (5:4:1) selectively removes the *O*-acetyl moieties in protected cytidines and adenosines, while not affecting the N^4 - or N^6 -benzoyl groups in the cytosine or adenine moieties. (192)

In 2'-O-acetyl-3'-O-mesyl-5'-O-methoxycarbonyl-1- β -D-xylofuranosylthymine the 2'-O-acetoxy group can be selectively removed in 75% yield by treatment with methanolic HCl at 24° for 72 hours. (545) Methanolic HCl also selectively removes the 3'- and 5'-O-acetyl groups in 2¢-deoxy-5-(2,2-difluorovinyl)uridine, whereas methanolic K₂CO₃ leads to addition of methanol to the 5-(2,2-difluorovinyl) group. (546, 547) Since methanolic ammonia cleaves the *N*-substituted succinimide ring in 1 β

-(2',3',5'-tri-O-acetyl-D-ribofuranosyl)-1H-pyrrole-2,5-dione, methanolic HCl had to be used for the selective removal of the O-acetyl protecting groups. (548) The reaction of ammonia with O-acyl groups (549) as well as the

selective removal of the protecting groups (550) in carbohydrate chemistry has been reviewed.

9.8. Melting Points of Free Nucleosides

Because of the many possible hydrogen bonds between nucleoside molecules in the crystalline state, repeated recrystallization from different solvents or solvent mixtures can give rise to different crystal forms (polymorphism), which have different melting points. Thus one should not be surprised if one obtains crystals with different and usually higher melting points on repeating certain nucleoside syntheses (see the preparation of 6-methyluridine, lumazine riboside, or ribavirin in Ref. 133).

10. Experimental Procedures

Unless indicated otherwise, the following experiments were carried out in a three-neck round-bottom flask equipped with a magnetic stirring bar, dropping funnel, thermometer, reflux condenser, and nitrogen inlet.

A standard TLC system for analysis of crude protected nucleosides is ethyl acetate:methanol (5:1). Optimal separations of crude protected nucleosides are often observed with two-phase partition systems such as toluene:acetic acid:H₂O (5:5:1) or *n*-butyl acetate:methyl glycol:H₂O (4:1:2) for the protected nucleosides, whereas the free nucleosides often show good separations with the two-phase system *n*-butanol:acetic acid:H₂O (5:1:4). In order to obtain reproducible results, the two-phase systems should be placed into the chromatography vessel. To avoid any contact of the silica layer of the TLC plates with the stationary aqueous lower phase, the lower part of the silica plates should be scraped off so that the silica layer will only come in contact with the upper, mobile phase of these partition systems. (81, 84)

The best analytical, as well as preparative, separations of mixtures of free, unprotected nucleosides (especially mixtures of α / β anomers) can be achieved by HPLC on reversed phase (RP) columns (e.g., Nucleosil 7 C₁₈ columns) using linear gradients of 100 to 50% water with 0 to 50% methanol or acetonitrile.

For supplies of special carbohydrate building blocks or larger amounts of particular carbohydrate derivatives such as **18**, **17**, or N^2 -acetylguanine (**303b**) contact:

Ajinimoto Co., Inc. 1–15–1 Kyobashi, Chuo-ku, Tokyo 104, Japan Phone + 81–3-5250–8111; Fax + 81–3-5250–8293

Berry & Assoc., Inc. P.O. Box 1071, Ann Arbor, MI 48106, USA
Phone + 1–734–426–3787, Fax + 1–734–426–9077
Boehringer Ingelheim KG, Chem. Division, Bingerstr. 137, 55216
Ingelheim, Germany

Phone + 49–6132–772192; Fax + 49–6132–773755 Cambridge Research Biochemicals, Gadbrook Park Northwich, Cheshire CW9 7RA, U.K.

Phone + 44–606–41100; Fax + 44–606–49366 Omnichem S. A., Indust. Res. Park-Fleming, 1348 Louvain-La Neuve, Belgium

Phone + 32–10–483111; Fax + 32–10–450693 Pharma-Waldhof GmbH, Postfach 110732, 40507 Düsseldorf, Germany Phone + 49–211–526020; Fax + 49–211–5260211 Pro.Bio.Sint S.r.I., Via Valverde 20/22, 21100 Varese, Italy Phone + 39–332–218136; Fax + 39–332–212575 Pfanstiehl Laboratories, Inc., 1219 Glen Rock Avenue, Waukegan, IL 60085–0439, USA Phone + 1–800–383–0126, Fax + 1–708–623–9173M Reliable Biopharmaceutical Corp., P.O. Box 2517, St. Louis, MO 63114, USA Phone + 1–314–429–7700, Fax + 1–314–429–0937

Yamasa Corporation, 1–23–8 Kakigarocho, Nihonbashi, Chuo-Ku, Tokyo 103, Japan

Phone + 81-3-3668-3366; Fax + 81-3-3668-3177

10.1.1. 2',3',5'-tri-O-benzoyI-5-nitrouridine (81a) (84)

A mixture of 7.85 g (50 mmol) of 5-nitrouracil, 42 mL (200 mmol) of HMDS, and 1 mL of TMSCI was heated at reflux for 1 hour, whereupon the 5-nitrouracil had passed into solution. The excess HMDS (bp126°) was removed by distillation and the residue was distilled at 110–111° (0.2 Torr) in a Büchi-Kugelrohr short-path distillation apparatus with careful exclusion of moisture to afford 14.3 g (95%) of silylated 5-nitrouracil (80) as a viscous liquid. This product was dissolved in 100 mL of 1,2-dichloroethane (distilled from P_4O_{10}) to give a 475 mM standard solution.

To a solution of 5.04 g (10 mmol) of **18** in 75 mL of 1,2-dichloroethane, 23 mL (11 mmol) of a standard solution of silylated 5-nitrouracil in 1,2-dichloroethane and 0.35 mL (3 mmol) of redistilled (bp114°) SnCl₄ in 40 mL of 1,2-dichloroethane were added with stirring. After 1 hour the reaction mixture was diluted with 150 mL of CH₂Cl₂ and shaken with 200 mL of saturated NaHCO₃. After filtration through a layer of Celite to remove the tin salts and repeated washings of the Celite layer with CH₂Cl₂, the layers were separated and the aqueous phase was extracted with 3 × 100 mL of CH₂Cl₂. The combined organic phase was dried (Na₂SO₄) and evaporated to give 6.9 g of

crude product, which was recrystallized from 200 mL of ethanol to furnish in four crops 5.79 g (96%) of pure 2',3',5'-tri-O-benzoyl-5-nitrouridine (81a), mp 184–185°.

10.1.2. 1- β -D-Ribofuranosyl-2-pyridin-2-one (99)

A mixture of 9.51 g (100 mmol) of purified pyridin-2-one and 80 mL (400 mmol) of HMDS was heated at reflux for 1 hour in an oil bath with magnetic stirring and evolution of NH_3 , whereupon the heterocyclic base passed into solution. After distillation of the excess HMDS, the residue was distilled in a Büchi short-path Kugelrohr apparatus at $65^{\circ}/12$ mm to afford 15.9 g (95%) of 2-trimethylsilyloxypyridine, which was dissolved in 200 mL of 1,2-dichloroethane. After addition of 50.4 g (100 mmol) of 18, a solution of 14.0 mL (120 mmol) of redistilled (bp114°) SnCl₄ in 300 mL of 1,2-dichloroethane was added rapidly with stirring and exclusion of moisture. After 4 hours the reaction was practically complete according to TLC [upper phase of toluene:acetic acid:H₂O (5:5:1)]. The reaction mixture was poured onto a mixture of 600 mL of ice-cold CH₂Cl₂ and 750 mL of saturated NaHCO₃ solution. The crude reaction mixture was filtered through a layer of Celite, and the Celite layer was carefully washed with CH_2CI_2 . The filtrate layers were separated and the aqueous phase was extracted with 4×250 mL of CH₂Cl₂. The combined organic phase was dried (Na_2SO_4) and evaporated to give 62 g of a crude oil, which was recrystallized from 900 mL of CCl₄ to give in several crops 45.6 g (85%) of pure 1-(2',3',5'-tri-O-benzoylβ-D-ribofuranosyl)pyridin-2-one, mp 140–142°.

The 2',3',5'-tri-O-benzoate (2.75 g, 5 mmol) was dissolved in 150 mL of saturated methanolic ammonia, stirred for 24 hours at 24°, and evaporated. The residue was dissolved in 100 mL of H₂O and the aqueous phase was extracted with 3×75 mL of methyl *tert*-butyl ether to remove the methyl benzoate and benzamide. The aqueous solution was evaporated and the residue was recrystallized from 20 mL of ethanol: 2-propanol (3:1) to give in two crops 0.9 g (80%) of 1- β -D-ribofuranosyl-2-pyridin-2-one, mp 147–150°.

10.1.3. 5-Methoxyuridine-2',3',5'-tri-O-benzoate (81b) (133, 189)

(a) To a stirred solution of 5.04 g (10 mmol) of 18 in 75 mL of 1,2-dichloroethane, 34 mL of a 0.356 N standard solution (11 mmol) of silylated 5-methoxyuracil ((80)) in 1,2-dichloroethane and 22.8 mL of a 0.522 N standard solution of TMSOTf in 1,2-dichloroethane were added under nitrogen with exclusion of moisture. After 4 hours at 24° and dilution with CH₂Cl₂, the solution was shaken with excess ice-cold saturated NaHCO₃ solution and the aqueous phase was extracted with 3×50 mL of CH₂Cl₂. The combined organic phase was dried (Na₂SO₄) and evaporated to afford the crude protected nucleoside, which crystallized from ethyl acetate-hexane to give 5.24 g (89%) of pure crystalline 81b, mp 205–207°, homogeneous on TLC (ethyl acetate:methanol 5:1). (b) To a mixture of 0.53 g (5 mmol) of 5-methoxyuracil, 2.52 g of 18, and 3.84 g (12 mmol) of potassium nonaflate (C₄F₉SO₃K) in 50 mL of acetonitrile were added 0.74 mL (3.5 mmol) of HMDS and 1.89 mL (15 mmol) of trimethylchlorosilane. The mixture was heated at reflux for 20 hours. After workup with ice-cold KHCO₃/ CH₂Cl₂, the biphasic mixture was filtered to afford ~ 3 g (80%) of recovered potassium nonaflate. The combined organic phase was dried (Na₂SO₄) and evaporated, and the crude product was recrystallized from ethyl acetate-hexane to give 2.09 g (71%) of pure crystalline 5-methoxyuridine-2',3',5'-tri-O-benzoate (81b), mp 205–207°.

10.1.4. Guanosine (5) (133)

To a stirred mixture of 13.5 mL (4.09 mmol) of a 0.303 N standard solution of silylated N^2 -acetylguanine (**108b**) in 1,2-dichloroethane and 1.86 g (3.7 mmol) of **18** in 35 mL of 1,2-dichloroethane was added 6.32 mL (4.46 mmol) of a 0.705 N standard solution of TMSOTf in 1,2-dichloroethane. The reaction mixture was heated at reflux for 1.5–4 hours, and then diluted with CH₂Cl. On workup with ice-cold NaHCO₃ solution, there was obtained 2.32 g of crude product, which was kept for 42 hours in 125 mL of methanolic ammonia at 24°. After workup, recrystallization from H₂O gave, in two crops, 0.69 g (66%) of pure guanosine, which was homogeneous (R₁0.3) in the partition system *n*-butanol:acetic acid:H₂O (5:1:4) and whose ¹H NMR spectrum at 400 MHz in D₂O showed only traces of the undesired N^7 -anomer of guanosine.

10.1.5. 1-(4',6'-di-O-acetyl-2',3'-dideoxy- β -and- α -D-glucopyranosyl)thymine (192)

To a stirred suspension of 2.15 g (8.75 mmol) of pure oily methyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-glucopyranoside, 1.21 g (9.5 mmol) of thymine, and 2.0 mL (9.59 mmol) of HMDS in 70 mL of acetonitrile, 1.35 mL (10.5 mmol) of trimethylchlorosilane, and 1.3 mL (11 mmol) of redistilled SnCl₄ were added carefully. The reaction mixture was heated at 44° for 22 hours, then evaporated in vacuo. The crude product was taken up with 150 mL of ice-cold ethyl acetate and 100 mL of saturated NaHCO₃ solution. After filtration through a layer of Celite, the aqueous phase was extracted with 2 × 150 mL of ethyl acetate, and the combined ethyl acetate solution was washed with 150 mL of saturated NaCl solution, dried (Na_2SO_4), and evaporated to give 2.5 g of crude product, which contained four compounds (TLC, EtOAc). Chromatography on a 5 \times 36-cm column of SiO₂ and elution with hexane:ethyl acetate (3:1) afforded 1.93 g (65%) of 1-(4,6-di-O-acetyl-2',3'-dideoxy- ß -D-glucopyranosyl)thymine and 0.53 g (18%) of 1-(4,6-di-O-acetyl-2',3'-dideoxy- α -D-glucopyranosyl)thymine as well as 4% of the corresponding N^3 - β and 4% of the N^3 - α -nucleosides.

10.1.6. 2,6-Dichloro-1-(2'-deoxy-3',5'-di-O-p-toluoylβ-D-erythro-pentofuranosyl)imidazo-[4,5-c]pyridine (41) (64) To a stirred suspension of 0.61 g (3.2 mmol) of

2,6-dichlorimidazo-[4,5-*c*]pyridine in 25 mL of acetonitrile was added 0.17 g (3.5 mmol) of 50% oily immersion of NaH under nitrogen. After 30 minutes at room temperature, 1.38 g (3.5 mmol) of **21** was added and the reaction mixture was stirred for 2 hours at 50°. Filtration and evaporation of the filtrate afforded the crude oily product, which was chromatographed in toluene:acetone (95:5) on a 4 × 40-cm column of SiO₂ to give 1.15 g (66%) of pure **41**, mp 165–167°.

10.1.7. 4-Methoxy-2-(methylthio)-7-(2',3',5'-tri-O-benzyl- β -D-arabinofuranosyl)pyrrolo-[2,3-d]pyrimidine (49) (66)

Dry hydrogen bromide was bubbled into a solution of 3.5 g (6.15 mmol) of commercial 1-*O-p*-nitrobenzoyl-2,3,5-tri-*O*-benzyl-D-arabinofuranose (Pfanstiehl Laboratories, Inc.) in 15 mL of dry CH_2Cl_2 until no further *p*-nitrobenzoic acid precipitated. The acid was filtered and washed with a small volume of dry CH_2Cl_2 and the combined filtrate was evaporated to give 22. The 1-bromosugar 22 was dissolved in 10 mL of CH_2Cl_2 and added to a suspension of 1.0 g (5.1 mmol) of

4-methoxy-2-(methylthio)-7*H*-pyrrolo[2,3-*d*]pyrimidine (48) in 10 mL of CH₂Cl₂.

After addition of 0.3 g (1.1 mmol) of benzyltriethylammonium chloride and 30 mL of 50% NaOH, the mixture was stirred vigorously for 15 minutes with a vibromixer. The organic layer was separated, washed with water, dried (Na₂SO₄), and evaporated. The viscous residue was chromatographed using CHCl₃ on a 5 × 70-cm column of SiO₂. After elution of 0.63 g (21%) of the pure α anomer 50, mp 62–63° (methanol), 1.94 g (63%) of the desired viscous β anomer 49 was obtained.

10.1.8. 3',5'-Di-O-toluoylthymidine (273)

To a stirred solution of 1.2 g (3.1 mmol) of **21** and 1.0 g (3.4 mmol) of bis(trimethylsilyloxy)thymine in 80 mL of dry CHCl₃, 0.60 g (3.1 mmol) of anhydrous CuI was added. After 2 hours the reaction mixture was treated with 60 mL of saturated NaHCO₃ solution and filtered through a layer of Celite. After reextraction of the aqueous phase with 50 mL of CH₂Cl₂, the combined organic phase was dried (Na₂SO₄) and concentrated to give 1.4 g (92%) of a white solid with a β : α ratio of 93:7 (¹H NMR). Stirring of the solid with 40 mL of ethanol, filtration, and washing with 2 × 15-mL portions of ethanol gave 1.1 g (71%) of the pure β anomer, mp 195–196°.

11. Tabular Survey

The following tables include examples of nucleoside synthesis collected during the last 20 years up to the middle of 1994. Subsequently only a few additional papers and patents are cited. Searches were conducted in the *Chemical Abstracts* databases and the *Science Citation Index*. Because of the enormous extent of literature dealing with the synthesis of nucleosides, however, this comprehensive collection of data cannot be guaranteed complete.

The tables include reactions of free sugars or sugar derivatives with heterocyclic bases and their derivatives. Transglycosidation reactions as well as reactions of sugars to build up the pyrimidine or purine part of the nucleosides, such as the "Sanchez-Orgel"-type reaction, are **not** part of the tables but are covered in the text.

The tabular survey is divided in the following headings:

Table I:	One Step-One Pot Silylation/Coupling of Heterocyclic Bases with Sugars–Friedel-Crafts Catalysts
Table II:	One Step-One Pot Coupling of Heterocyclic Bases with Sugars–Friedel-Crafts Catalysts
Table III:	Reactions of Silylated Heterocyclic Bases with Protected Sugars– SnCl ₄ Catalyst
Table IV:	Analogous Reactions with Trimethylsilyl and Silver Triflates and Perchlorates
Table V:	Reactions with Titanium Tetrachloride as Catalyst
Table VI:	Reactions with Boron Trifluoride Etherate as Catalyst
Table VII:	Reactions with Miscellaneous Friedel-Crafts Catalysts
Table VIII:	Reactions of Silylated Bases with Protected Sugars with or without Catalysts
Table I <mark>X</mark> :	Fusion Reactions
Table <mark>X</mark> :	Miscellaneous Reactions of Heterocyclic Bases with Protected Sugars
Table <mark>XI</mark> :	Reactions of Acidic Heterocycles with 1-Halosugars in the Presence of Bases

Within each table, sugar derivatives reacting with heterocyclic bases are listed according to increasing carbon number, and increasing hydrogen number within a given carbon number.

For sugar derivatives having the same carbon and hydrogen number, the sugars are listed according to increasing ring size. The order of the reactants (heterocycles) is as follows:

Number of Rings

Ring size (5-ring > 6-ring ..)

Number of N atoms in the Ring (pyridine > pyrimidine...)

N-pattern in the heterocycles

Number of substituents

1

Kind of substituents:

 $\begin{array}{l} \mathsf{F} > \mathsf{CI} > \mathsf{Br} > \mathsf{I} > \mathsf{CO} > \mathsf{NHR} > \mathsf{NR}_2 > \mathsf{OH} > \mathsf{NO}_2 > \mathsf{CN} > \mathsf{Alkyl} > \mathsf{Aryl} > \\ \mathsf{O}\text{-}\mathsf{Alkyl} > \mathsf{CONR} > \mathsf{CO}_2\mathsf{R} > \mathsf{S}\text{-}\mathsf{Alkyl} > \mathsf{Acetyl} > \mathsf{Benzoyl} \\ \\ \mathsf{Yields} \ \text{are given in parentheses in the product column of the tables.} \end{array}$

Abbreviations:

Aliquat 336	methyltrioctylammonium chloride
An	anisoyl
BETF	2-(1-benzimidazoyl)-3-ethylbenzoxazolium tetrafluoroborate
Bn	benzyl
BOC	tert-butoxycarbonyl
BSA	N, O-bis(trimethylsilyl)acetamide
Bz	benzoyl
t Bz	<i>p-tert</i> -butylbenzoyl
Cbz	carbobenzyloxy
CETF	2-chloro-3-ethylbenzoxazolium tetrafluoroborate
DEAD	diethyl azodicarboxylate
DIAD	diisopropyl azodicarboxylate
DMAP	4-dimethylaminopyridine
DME	1,2-dimethoxyethane
DMTST	dimethyl(methylthio)sulfonium triflate
FMPT	2-fluoro-1-methylpyridinium tosylate
HMDS	hexamethyldisilazane
HMPA	hexamethylphosphortriamide
IDCP	iodonium dicollidine perchlorate
MMTrO	<i>p</i> -monomethoxytrityl
Ms	mesyl
MS	molecular sieves
NBS	N-bromosuccinimide
NIS	<i>N</i> -iodosuccinimide

NMP	N-methylpyrrolidone
NPht	phthalimide
Piv	pivaloyl
Pht	phthaloyl
Ру	pyridine
TBDMSO	tert-butyldimethylsilyloxy
TBDPSO	tert-butyldiphenylsilyloxy
TEBA	benzyltriethylammonium chloride
TFA	trifluoroacetic acid
Tf	trifluoromethylsulfonyl (triflyl)
Tf_2O	trifluoromethylsulfonic acid anhydride
$TIPDSCl_2$	1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane
TMS	trimethylsilyl
TMSCI	trimethylsilyl chloride
TMSI	trimethylsilyl iodide
TMSOTf	trimethylsilyl triflate
Tol	toluoyl
Tr	triphenylmethyl
TsOH	<i>p</i> -toluenesulfonic acid
Ts	tosyl

 Table I. One Step-One Pot Silylation/Coupling of Heterocyclic Bases with

 Sugars– Friedel-Crafts Catalysts

View PDF

 Table II. One Step-One Pot Coupling of Heterocyclic Bases with Sugars–

 Friedel-Crafts Catalysts

View PDF

Table III. Reactions of Silylated Heterocyclic Bases with Protected Sugars - SnCl₄ Catalyst

View PDF

Table IV. Reactions with Trimethylsilyl and Silver Triflates andPerchlorates

View PDF

Table V. Reactions with Titanium Tetrachloride as Catalyst

View PDF

Table VI. Reactions with Boron Trifluoride Etherate as Catalyst

View PDF

Table VII. Reactions with Miscellaneous Friedel-Crafts Catalysts

View PDF

 Table VIII. Reactions of Silylated Bases with Protected Sugars with or without Catalysts

View PDF

Table IX. Fusion Reactions

View PDF

Table X. Miscellaneous Reactions of Heterocyclic Bases with Protected Sugars

View PDF

 Table XI. Reactions of Acidic Heterocycles with 1-Halosugars in the Presence of Bases

View PDF

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	HN CH ₂ OH	TCS, HMDS 1. 160° 2. rt, 24 h	$^{0} \underset{O}{} \underset{O}{} \underset{NH}{} \underset{NH}{} \underset{(40)}{}$	551
C ₅	HN O N H	TCS, HMDS 1. 160° 2. rt, 24 h	$ \underbrace{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	551
	HN $FO N SO_2Ph$	BSA, SuCl4, CH2Cl2, п, 4 h	$\overbrace{\qquad }^{O} \xrightarrow{\qquad N}_{O} \xrightarrow{\qquad }^{F} (88)$	552
		TCS, HMDS, SnCl ₄ , MeCN, 0°, 30 min	$\begin{array}{c} & & \\$	553
C7 AcO OAc		BSA, SnCl4, CH2Cl2, rt, 12 h	$AcO \longrightarrow O \qquad X \qquad$	554
	SMe N F N H	BSA, SnCl4, CH2Cl2, rt, 12 h	AcO - O - O - O - O - O - O - O - O - O -	554
C ₉ OAc	N = N = N = N = N = N = N = N = N = N =	1. HMDS, (NH ₄) ₂ SO ₄ , TMSOTf, MeCN, 20°, 16 h 2. NH ₃ , MeOH	NH_2 N	555
	HN H_2N N N N H H	1. HMDS, (NH4)2SO4, TMSOTf, MeCN, 20°, 16 h 2. NH3, MeOH	$ \begin{array}{c} $	555
C_{10} AcO OAc		1. BSA, MeCN, 50°, 3 h 2. SnCl4, rt, 12 h	$ \begin{array}{c} $	556
		BSA, Py, McCN, SnCl4, Cl(CH2)2Cl		557
	CI HN N O N H	TCS, HMDS, TsOH, McCN, reflux 19 h		558

TABLE 1. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS
Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
H O O O O Ac		TCS, HMDS, SnCl4, MeCN, 120°, 30 min		559
O OBz		TCS, HMDS, SnCl ₄ , MeCN, 0°, 30 min	$ \begin{array}{c} & & \\ & & $	553
S S C Bz		TCS, HMDS, SnCl4, MeCN, 0°, 30 min	$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	553
		TCS, HMDS, SnCL4, MeCN, 45°, 20 h	Aco NH (60) + α anomer (18)	192
	HN HN H H	TCS, HMDS, SnCl4, MeCN, 45°, 20 h	Aco Aco NH Aco NH (65) + α anomer (18) + N^3 - β isomer (4) + N^3 - α isomer (4)	192
	NHBz N N H	BSA, SnCl ₄ , MeCN, 45°, 2 h	Aco- 0 NHBz (50) + α anomer (20)	192
AcO OAc	$\mathbb{N}_{\mathbb{N}}^{\mathbb{N}} \xrightarrow{\mathbb{N}}_{\mathbb{N}}^{\mathbb{N}}$	1. HMDS, (NH ₄) ₂ SO ₄ , TfOH, McCN, 20°, 16 h 2. NH ₃ , McOH	AcO NH_2 (40)	555
	HN HN H H H_2N N H H	1. HMDS, (NH4) ₂ SO ₄ , TfOH, McCN, 20°, 16 h 2. NH ₃ , MeOH	HO OH N NH (61) N NH ₂ HO OH	555
C ₁₂ BnO Cl CO ₂ Me		BSA, SnCl ₄ , CH ₂ Cl ₂ , 0-25°, 17 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	560
		BSA, ՏոCl4, CH2Cl2, 0-25°, 17 հ	BnO - O - O - O - O - O - O - O - O - O -	560

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILYLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE 1. ONE STEP-ONE POT SILVLATION/COUPLING OF HETFROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	NHBz N O N H	TCS, HMDS, SnCl4, MeCN, 0-55°, 70 min	AcO H O N N N = 2:3	569
		BSA, TMSOTf, MeCN 1. rt, 60 h 2. 40°, 6 h	AcO H O N N $(45) \alpha:\beta = 8:5$ O Ac N N $(45) \alpha:\beta = 3:2$ N N N N N N N N N N	569
		BSA, TMSOTf, MeCN 1. 80°, 2 h 2. rt, 3 h	$AcO H \rightarrow O N \qquad (78) \alpha:\beta = 3:2$	569
C ₁₄ BzO		BSA, TMSOTf, MeCN, rt, 15 min	$\begin{array}{c} OH \\ \bullet \\ \bullet \\ BzO \end{array}$	570
	NHBz ON N H	BSA, TMSOTf, MeCN, 40°, 1 h	$B_{zO} \longrightarrow N \longrightarrow NHBz (64) \alpha:\beta = 1:1$	570
		BSA, TMSOTf, MeCN, 40°, 30 min	OH OH OBz N N N N N OH OH OH OH OH OH OH OH	570
	i-PrCONH N H	BSA, TMSOTf, McCN, 40°, 1 h	$ \begin{array}{c} O \\ O $	570
Aco OAc		TCS, HMDS, SnCl4, MeCN, n, 2 h		571
AcO Br		HMDS, Cl(CH ₂) ₂ Cl, SnCl4, π, 12 h	$AcO \to NH \qquad (70)$	367

TABLE I. ONE STEP-ONE POT SILYLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILYLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILYLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		TCS, HMDS, SnCl4, MeCN	$I, R^1 = H$ (82)	192f
		TCS, BSA, SnCl4, MeCN,	$I, R^1 = Me$ (46)	593
BzO OBz ~ OAc		reflux, 5 min	Cl $(54) + N^7$ isomer (20)	504
OAc		ГСЗ, HMDS, SnCl₄, MeCN, п, 1 h		594
		BSA, TMSOTf, McCN, reflux, 6 h	$ \begin{pmatrix} N \\ N \\ N \\ N \\ R \\ 0 \end{pmatrix} $ NHAc (9) + N ⁹ isomer (59)	537
BzO OAc		TCS, HMDS, SnCl ₄ Cond.	$\begin{array}{c} R \\ NH \\ NH \\ NH \\ H \\ T, 60^{\circ} \\ Mc \\ Mc \\ N \\ N \\ Mc \\ N \\ (-)$	595
	н		BZO OAc Me reflux, 1.5 h (64) ()	595
	HN HN H	1. BSA, TMSOTf, MeCN, reflux, 6 h 2. NH ₂ NH ₂ •H ₂ O, rt, 7 h	$\begin{array}{c} 0 \\ N \\$	595
BzO BzO	$HN \rightarrow H$	TCS, HMDS, SnCl4, McCN, rt, 24 h	$\dot{O}Ac$ BzO R N NH H (66) Me (64)	596
C ₁₅		 BSA, TMSOTf, MeCN, reflux, 6 h H₂NNH₂•H₂O, Py, AcOH, rt, 3 h 	$B_{2O} \xrightarrow{N}_{N \to N} H (54) + N^{7} \text{-isomer (16)}$	595
BnO OBn OAc	O HN O H	TCS, HMDS, SnCl4, MeCN, reflux, 0.5 h	R = OBn O OBn O OAc	598, 599
TBDPSO S. MOAc	HN O HN H	TCS, HMDS, C4F9SO3K, MeCN, п, 12 h	TBDPSO \sim	600
TBDPSO		TCS. HMDS. C ₄ F9SO ₃ K, McCN, 25°, 12 h		597

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
TolO	HN ON N H	TCS, HMDS, TMSOTf, MeCN, -78°, 1.5 h		601
C ₂₄ BnO OAc		TCS, HMDS, C4F9SO3K, MeCN	R = BnO O OAc	587
		TCS, HMDS, C4F9SO3K, MeCN	$ \begin{pmatrix} \mathbf{N} \\ \mathbf{N}$	587
		TCS, HMDS, C4F9SO3K, MeCN	$ \begin{pmatrix} N \\ N \\ N \\ N \\ N \\ R \end{pmatrix} $ ()	587
		TCS, HMDS, SnCl ₄ , MeCN, r t, 4 h	NH (91)	571
	HN O N H	TCS, HMDS, CF ₃ SO ₃ H, McCN 1. rt, 3.5 h 2. 60°, 40 min	NH I (78)	571
		TCS, HMDS, SnCl4, McCN, rt, 4 h	I (79)	571
		TCS, HMDS, CF ₃ SO ₃ K, MeCN, reflux	l (87) + α -anomer (6)	574
C ₂₆ BnO BnO Cl	$ \begin{array}{c} 0 \\ HN \\ O \\ N \\ H \end{array} $	TCS, HMDS, SnCl4, MeCN	$R^{1} \xrightarrow{O}_{R} NH \qquad R = \underbrace{BnO}_{BnO} \xrightarrow{O}_{BnO}$	
	R ¹ Et		()	602
	n-Pr n-Bu		() ()	602 602
	CH=CH ₂ CH=CH ₂	or Cl(CH ₂) ₂ Cl	(65) (65)	602 363
	i-Pr	rt, 24 h	(61)	359
Ç.,		TCS, HMDS, TMSOTf, Cl(CH ₂) ₂ Cl, п, 10 h	$N = NH (33) + N^{7} \text{-isomer (2)}$ $N = N = N = N = N = N^{1}$ $N = N = N = N^{1}$	361
BzO OBz BzO OMe	O HN O N H	HMDS, (NH4)2SO4, SnCl4, Cl(CH2)2Cl, reflux, 1 h	$ \begin{array}{c} O \\ I \\ I \\ I \\ R \end{array} $ $ \begin{array}{c} BzO \\ R = \\ BzO \\ BzO \\ OMe \end{array} $	226
Bro OMe Bno OTBDMS		BSA, ՏոCl₄, MeCN, 80°, 11 հ	$\begin{array}{c} O \\ NH \\ NH \\ R \end{array} \qquad \begin{array}{c} R = \\ BnO \\ O \\ TBDMS \end{array}$	226a

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
Con	NHBz N N N N H	HMDS, (NH4) ₂ SO4, SnCl4, Cl(CH ₂) ₂ Cl, reflux, 1 h	NHBZ N (70) R R	226
MMTrO N H		TCS, HMDS, TBDMSOTf, MeCN, 124°	MMTro N NH R (20) N NH (20) N N NH (20) N NE (20) N NE (20) N NE (20) N NH (20) NH (232
	NHBz N N H	TCS, HMDS, TMSOTf, McCN, 124°	H NHBz N N N N N (20)	232
BzO OAc BzO OBz	R^{1} R^{1} R^{1} R^{1} R^{1} R^{1}	TCS, HMDS, SnCl4, MeCN, rt	$ \begin{array}{c} $	
	Cl CO ₂ H Br I	2 h 0.5 h 2 h 2 h	(77) (>90) (85) (61)	603 604 603 603
	O N H	1. TCS, HMDS, C ₄ F9SO3K, MeCN, heat, 24 h 2. NH3, MeOH		189
	O2N N O N MeO2C NH	TCS, HMDS, CF3SO3H, McCN, п, 0.5 h	$R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	604
		TCS, HMDS, MeCN		
		SnCl4, rt, 2 h Nal NaBF4, 83°, 2 h NH4ClO4, 83°, 19 h NH4ClO4•H2O, 83°, 19 h CF3SO3H, rt, 4 h, reflux 0. C4F9SO3K, heat	(83) (66) (42) (40) (58) 5 h (81) (84)	189 137 188 188 188 188 189 189
	NH ₂ N N H	TCS, HMDS, C4F9SO3K, MeCN, heat, 26 h	NH2 N (56) N O R	189

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Prode	act(s) and Yield(s) (%)	Refs.
	HN O N	TCS, HMDS, CF3SO3H. McCN. rt 4 b	NH (88)	$R = \bigcup_{B_{2}O \ OB_{2}}^{B_{2}O \ OB_{2}}$	605, 606
		TCS, HMDS, MeCN			
	<u>R</u> ¹ Me Me	SnCl4 CF3SO3H, heat, 1 h	Ř (—) .(88)		586 607
	Me OMe	TMSOTf, reflux, 0.5 h C ₄ F9SO3K, reflux, 20 h	(82) (70)		606 189, 608, 609
	SMe S	$C_4F_9SO_3K$, reflux, 20 h $C_4F_9SO_3K$, reflux, 20 h $C_4F_9SO_3K$, reflux, 20 h	(48) (70) (72)		610 610 610 610
	S SBn NH2	C ₄ F9SO3K, reflux, 20 h C ₄ F9SO3K, reflux, 20 h	(48) (51) NH2	2.0	610
		I. TCS, HMDS, MeCN, C4F9SO3K, reflux, 24 h 2. Amberlyst A-26, MeOH	F N R (55)	$R = \begin{matrix} BZO \\ O \\ HO \\ OH \end{matrix}$	534
	HN S H	TCS, HMDS, SnCl4, MeCN, п, 6.5 h	NH (59)	$R = \begin{bmatrix} BzO & & \\ $	189 z
	HN N N S H	HMDS, TMSOTf, MeCN	NH N N N O R		610
	O OH HN CO ₂ Bu O N H	TCS, HMDS, CF3SO3H		(76%) 1:1 mixture	611
	NH2 O2S H	TCS, HMDS, C4F9SO3K, MeCN, heat, 24 h	NH_2 N O_2S R (41)		191
	$ \begin{array}{c} $	TCS, HMDS, CF3SO3H, MeCN	$R^1 - \bigvee_{\mathbf{N}}^{\mathbf{N}} R$		612
	CH ₃ CH ₂ CN Bn SCF ₃ CH ₂ SCF ₃		() () () ()		

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE I. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	HN HN H H H	BSA, TMSOTf, MeCN, rt, 2.5 h	$BnO \xrightarrow{V} O$ $NH \qquad \frac{R}{H} \qquad \frac{\alpha \text{-anomer}}{(31)}$ $Me \qquad (41) \qquad (37)$	620
C ₃₀ BzO BzO MsO OBz	O HN O N H	TCS, HMDS, TMSOTf, McCN, п, 12 h	BrO OBn 0 NH (69) BzO NH (69) BzO O NH (69)	581
BzO OBz MsO OBz		TCS, HMDS, TMSOTf, MeCN. п, 8 h	$B_{ZO} \xrightarrow{O} OB_{Z} \xrightarrow{N} O$ (69)	581
C ₃₂ B2O OB2 B2O OTBDMS	HN ON H	HMDS, (NH ₄) ₂ SO ₄ , SnCl4, Cl(CH ₂) ₂ Cl, reflux, 1 h	MsO OBz NH (95) R = BzO OTBDMS	226
	NHBz N N H	HMDS, (NH4)2SO4. SnCl4, Cl(CH2)2Cl, reflux, 1 h	NHB2 N (86) R	226
C ₃₄	HN ON H NHBz	TCS, HMDS, SnCl4, MeCN, reflux, 20 min	NHBz	621, 226
		BSA, TMSOTf, MeCN, 80°, 3 h		622, 623
BzO BzO OBz	HN N HN N HN N H	BSA, TMSOTf, McCN, 80°, 16 h	BZO OBZ N NH (89) $\beta - N^{2}; \beta - N^{7} = 3:2$ BZO OBZ	192

TABLE 1. ONE STEP-ONE POT SILVLATION/COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs
	NHCOPr-i		NHCOPr-i	
AcO OAc	N N H	SnCl ₄ , Cl(CH ₂) ₂ Cl, 50°, 3 h		424a
Aco N ₃	NHCOC ₇ H ₁₅ N N H	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 15 h 2. NaOMe	Acô ÓAc HO N_3 N N_1 $(60-65) \alpha:\beta = 1:2$ HO N_3 N NH_2	624
	$HN \qquad N \qquad HN \qquad HN \qquad HN \qquad HI \qquad N \qquad HI \qquad HI$	 SnCl₄, Cl(CH₂)₂Cl, reflux, 90 min NaOMe, MeOH, 37°, 12 h 	HO HO HO N ₃ N HO N ₄₂ $(42) \alpha:\beta = 1.2:3$ $+ N^9$ -isomer (58), $\alpha:\beta = 0.7:5.1$ H_2N	624
		TMSOTf, HMDS, Cl(CH ₂) ₂ Cl,30°	$ \begin{array}{c} $	521
ACO OAc	NHCOC ₇ H ₁₃ - <i>n</i> N N H	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 24 h	$\begin{array}{c} \text{NHCOC}_{7}\text{H}_{15}\text{-}n \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	180
	NR ¹ Bz	SnCl ₄ , Cl(CH ₂) ₂ Cl	NHBz NHBz N N N N N N N N N N N N N	424
		SnCl4, McCN, rt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	625 626 625 192a 192a
		1. SnCl4, MeCN, rt, 12 h 2. thiourea, EtOH, reflux 3. rt, 12 h	N = N + (78)	192a
	S SBn N N N H	1. SnCl₄, MeCN, rt, 12 h 2. HS(CH₂)2OH. EtOH, rt, 3 h	$ \begin{array}{c} \text{BnS} \\ N \\ N \\ N \\ R \\ \text{Cl} \end{array} $ (85)	192a
		SnCl4, McCN, rt, 12 h	$ \begin{pmatrix} N & & \\ N & & \\ N & & \\ N & & \\ R & \\ R & \\ \end{pmatrix} $ (81)	192a
		SnCl4, MeCN, rt, 16 h		627

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
Aco OAc Aco OAc Aco	NH2 ONNH2	SnCl4, McCN, rl, 23 h	$(-)$ $R = 0$ $O_{Ac} AcO_{Ac}$ N_{N+2} $R = 0$	537
	NH_2 N N N N N N N N H	SnCl ₄ , MeCN, rt, 23 h	$ \begin{pmatrix} R \\ N \end{pmatrix} (-) $	537
Aco OAc Aco OAc	NH2 ON N H	SnCl4, MeCN	$ \begin{array}{c} \mathbf{R} \\ \mathbf{N} \\ \mathbf$	192f
		SnCl4, MeCN	$ \begin{array}{c} \mathbf{R} \\ \mathbf{N} \\ \mathbf$	192f
Aco OAc		SnCl4, MeCN or CH2Cl2, rt, 12 h	AcO AcO AcO AcO AcO AcO OAc N CI	86a
AcO AcO OAc	NH ₂ N N N H	SnCl4, MeCN	Aco NH_2 (70)	628
BzOOOAc	NHCOPr- <i>i</i> N H	SnCl ₄ , Cl(CH ₂) ₂ Cl, 27°, 20 h	AcO OAc NHCOPr-i $BzO \longrightarrow N$ (62)	1920
$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ OAc \\ OAc \\ OAc \\ \end{array}$		SnCl4, Hg(CN) ₂ , MeCN, 55°, 2 h	$AcO \rightarrow OH$	629
AcO AcO AcO OAc OAc	O ₂ N H	SnCl ₄ , Hg(CN) ₂ , MeCN, 1.5 h	ACO OAC ACO N NO_2 O CO CO CO CO CO CO CO	630 630

TABLE II. ONE STEP-ONE POT COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued

TABLE II. ONE STEP-ONE POT COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl4, MeCN	R^{I} N $R =$ BzO OBz BzO Bz BzO Bz Bz BzO Bz Bz BzO Bz Bz BzO Bz Bz Bz Bz Bz Bz Bz Bz	
	<u>R</u> 1 F Me Et Pr-n	50-60°, 10 h rt, 12 h rt, 12 h rt, 12 h rt, 12 h	(87) (99) (92) (90)	514b 633 633 633
	Bu-n C ₅ H ₁₁ -n C ₆ H ₁₃ -п QBu-t	rt, 12 h rt, 12 h rt, 12 h	(94) (95) (99) Q	633 633 633
		SnCl ₄ , McCN, rt, 30 min	F NH (97) N O R	634
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 12 h	NC N O N R (21) R	254
	$\begin{array}{c} H_2N & H \\ \hline H_2N & N \\ \hline N & N \\ N & N \end{array}$	SnCl₄, MeCN, п, 24 h	H ₂ N N N R (7) + N ¹ - α -isomer () + N ² - β -isomer (30) R	635
	NH2 N EtS N H	SnCl4, MeNO2, rt, 18 h	$N \rightarrow NH_2 (63)$ $N \rightarrow NH_2 (63)$ $R \qquad NH_2$	591
		1. SnCl4, MeCN, п, 24 h 2. NH3, MeOH		192a
		1. SnCl4, Cl(CH ₂) ₂ Cl, rt 2. NaI	$HO \longrightarrow OH MC (35)$	636
BzO OBz OAc OBz	NH2 N N H	SnCl4, MeCN, rt, 15 h	BzO OBz OBz OBz	192e. 192i
	N = N = N = N = N = N = N = N = N = N =	SnCl ₄ , MeCN, rt, 30 min	$BzO \longrightarrow OBz $ (68) (68)	192b

TABLE II. ONE STEP-ONE POT COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃₀ TolO TolO O TolO O Ts	NH2 N N N N H	SnCl4, MeCN	$TolO \longrightarrow O \longrightarrow N \longrightarrow $	213
BnO ₂ C NHTs	POAc NH2 NH2 N N N N N H	SnCL4, MeCN, 22°, 4.5 h	Tolo OTs BnO_2C NHTs NH_2 N (61) AcO OAc	86b
BZO BZO OAc		SnCl4, McCN, 24°, 18 h	BzO BzO	192n
BzO BzO OBz OAc	NHBz N N N N H	SnCl4, MeCN, 24°, 18 h	$\dot{O}Ac$ BzO BzO OAc OAc OAc $\dot{O}Ac$ $\dot{O}AC$	192n
$RO \rightarrow O \rightarrow OAc$ $AcO OAc$ $R = \left\langle \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$NH_2 \\ N \\ N \\ N \\ N \\ H$	SnCl4, McCN, rt, 18 h	$RO \xrightarrow{N}_{ACO} \xrightarrow{N}_{OAc} NH_2 (64)$	192c
	NH_2 NH_2 NH_2 N H N	SnCl4, McCN, rt, 17 h	r -BuO ₂ C N Ts NH_2 ACO OAc (67)	86b

TABLE II. ONE STEP-ONE POT COUPLING OF HETEROCYCLIC BASES WITH SUGARS - FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
\mathcal{F}_{0}		1. SnCl ₄ , CH ₂ Cl ₂ , ri, 1 h	HO	637
Me [`] OMe		2. NaHCO ₃ , MeOH, rt, 1 h SnCl ₄ , CHCl ₃ , rt, 20 min	R (62)	638
		1. H2O 2. SnCl4, dioxane, гt, 3 h	C	639
		1. H ₂ O 2. SnCl ₄ , PhMe, rt, 3 h	I (86)	639
Ž _{~x}		SnCl ₄ , CH ₂ Cl ₂ , n, i2 h	$\bigvee_{i=1}^{n} \bigvee_{j=1}^{n} \frac{\lambda}{Ci} (51) + cis \text{ isomer } (23)$ Br (51) + cis isomer (22)	640 640
		ՏոԸե, CH2Cl2, ռ, 1 հ	$R \xrightarrow{O} R \xrightarrow{NII} I \xrightarrow{R} (65)$ $HO \xrightarrow{O} F (33)$ $Me (54)$	641
		1. SnCl4, CHCl3, rt, 0.5 h 2. NaHCO3, MeOH	$\mathbf{I} \mathbf{R} = \mathbf{H} ()$	637
H N OMe		SnCl4, CH2Cl2, MeCN, 0-5°, 6 h; rt, 6 h	$O = \left(\begin{array}{c} H \\ R^2 \\ R^1 = F, (41) \end{array} \right) \qquad R^2 = \left(\begin{array}{c} O \\ R^1 \\ R^2 \\ R^2 \end{array} \right) $	642
		SnCl ₄ , CH ₂ Cl ₂ , r1, 48 h	AcO $R^2 = CF_{3}, (55)$	643
O CI		SnCl ₄ , CH ₂ Cl ₂ reflux, 12 h	$ \begin{array}{c} 0 \\ \hline \\ \hline$	644
□oCI		SnCl ₄ , CH ₂ Cl ₂ , rt, 16 h		645
	TMSO N ² N	SnCl4, CH2Cl2, MeCN, Cl(CH2)2Cl, 4°, 2 h		84
) – Et O	OTMS N F TMSO N	SnCl4, CH2Cl2, rt, 1 h		641
		1. SnCl4, CHCl3, rt, 3 h 2. NaHCO3, McOH	Et ()	637
$\langle \stackrel{\circ}{\rangle}_{0}$		1. SnCl4, CHCl3, rt, 3 h 2. NaHCO3, MeOH	F NH ()	637

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCi4 CATALYS
--

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
EtO OEt	OTMS N F TMSO N	SnCl ₄ , CHCl ₃ , π, 20 min	$F = (14) + N^{3} \text{-isomer (15)} + N^{1} N^{1} N^{3} \text{-bis(isomer) (9)}$ $F_{10} = (14) + N^{3} \text{-bis(isomer) (9)}$	638
EtO O		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 48 h	$HN \qquad Et \qquad (77)$	646
OOAc		SnCl ₄ , CH ₂ Cl ₂		647
		SnCl ₄ (0.01 eq), CH ₂ Cl ₂ , rt, 3 h	I (96)	528
		SnCl ₄		648
		SnCl ₄ (0.1 eq), CH ₂ Cl ₂ ,	F I (61)	528
		SnCl ₄ (0.1 eq), CH ₂ Cl ₂ ,	I (81)	528
		$snCl_4$ (0.01 eq), CH ₂ Cl ₂ . rt, 3 h	I (93)	528
		SnCl4, CH2Cl2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	649 649
		SnCl ₄	$\bigvee_{N=}^{O} \bigvee_{N=}^{NH} (80)$	648
O H N OMe	TMSO N	SnCl4, CH2Cl2, MeCN, -20 to -25°, 6 h; rt, 6 h	$ \begin{array}{c} 0 \\ - N \\ $	642
MeO MeO MeO Me		SnCl ₄ , Cl(CH ₂) ₂ Cl, -10°	$MeO \longrightarrow NH $ $(75) \ cis:trans = 1:1$	650
OSP OMe OH	TMSO	SnCl ₄ , MeCN, Cl(CH ₂) ₂ Cl, 80°, 24 h	OSPOME OH OH	651
O P OMe	TMSO	SnCl4, MeCN, reflux, 24 h	O P OMe I (28)	652
s		SnCl ₄ , MeCN, Cl(CH ₂) ₂ Cl, reflux, 24 h	s I (4)	652
		SnCl ₄ , MeCN, DMF, reflux, 24 h	1 (11)	652

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl4, CH2Cl2, rt, 18 h		643
		1. SnCl4 2. NH3, MeOH		653
	H ₂ NOC N TMS	1. SnCl₄ 2. NH₃, MeOH	$HO \longrightarrow O \longrightarrow$	653
		SnCl4, MeCN, rt, 48 h	AcO - O = O = O = O = O = O = O = O = O =	654
	TMSO N Bn	SnCl4, Cl(CH2)2Cl, rt, 18 h	$\begin{array}{c} & & \\$	655
	TMSO N N	SnCl4, Cl(CH2)2Cl, rt, 18 h	AcO O O O O O O O O O O O O O O O O O O	656
	TMSO N TMSO N	SnCl4, McCN, rt, 48 h	$\begin{array}{c} H \\ N \\ AcO \\ O \\$	657
	TMSO N S	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 18 h 2. NH ₃ , MeOH	$HO \longrightarrow O \\ HO \longrightarrow O \\ N \\ HO \longrightarrow O \\ N \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ H$	658
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, -30°, 8 h 2. NH ₃ , MeOH	HN HN HO O N R $\frac{N}{P-FC_6H_4}$ (24) $p-FC_6H_4$ (21) $p-BrC_6H_4$ (27) Me (62) + N ³ -isomer Ph (35) $p-MeC_6H_4$ (27)	659 (23)
		1. SnCl4, Cl(CH ₂) ₂ Cl, -30°, 8 h 2. NH3, MeOH	HO O N O O O O O O O O O O O O O O O O O	659
		SnCl4, Cl(CH2)2Cl, rt, 12 h	$F \xrightarrow{O}_{D} O$ $R = O \xrightarrow{O}_{OAc} O$	660
	TMSO N F	SnCl ₄ , CH ₂ Cl ₂ , -13 to -15°, 3 h	$ \underbrace{ \begin{pmatrix} A_c \\ N \\ N \end{pmatrix}}_{F} \underbrace{ \begin{pmatrix} N N \\ N \end{pmatrix}}_{F}$	642

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl4, MeCN, -20 to -25°, 24 h	$Ac \qquad O \qquad NH \qquad (60)$	642
NH Me		SnCl4, CH2Cl2, MeCN -20 to -25°, 6 h	$ \underbrace{ \begin{array}{c} 0 \\ NH \\ NH \\ N \\$	642
$C_{7-8} \xrightarrow{O} R$		SnCl ₄ , CH ₂ Cl ₂ , 20°, 2 d	HO - O - R - (48) - (661
	Bz N TMS	SnCl4, MeCN	$ \begin{array}{c} $	662
AcOOOAc		SnCl4, CH2Cl2. rt, 4 h	Aco NH K = 0 K = 0	640
	TMSO N F	SnCl4, McCN, -78°, 15 min; 25°, 4 h	$F \xrightarrow[N]{NH} O R = MeO \xrightarrow[N]{NH} OAc$	663
		SnCl4, MeCN, -78°, 15 min; 25°, 20 h	$\bigvee_{\substack{N \\ N \\ R}}^{N} \bigvee_{\substack{N \\ R}}^{N} (45) + N^{7} \text{-isomer} ()$	664
		SnCl4, MeCN, –78°, 15 min; 25°, 20 h	$NHBz \\ N $ (81)	664
	OTMS N AcN TMS TMS	SnCl4, MeCN, 78°, 15 min; 25°, 20 h	$N \rightarrow N \rightarrow NHAc$ $N \rightarrow NH$ $(21) + N7-isomer (12)$ $R = 0$	664
OAc OAc	H ₂ NOC N TMS	1. SnCl4 2. NH3, MeOH	$\begin{array}{c} OH \\ N \\ N \\ OH \\ OH \\ OH \\ OH \\ OH \\ O$	653
	N V N T MS	1. SnCl ₄ 2. NH ₃ , MeOH	$\begin{array}{c} & & & \\ & & & \\ OH & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	653
OAc 0 OAc	N N TMS	SnCl₄, MeCN, reflux	$ \begin{array}{c} $	665

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
AcO OEt EtO		SnCl ₄ , MeCN, 30°, 4 h	$AcO N N N N N N (25) + N^4-isomer (20)$	666
	TMSO N	SnCl4, CH2Cl2, 20°, 2 d	EtO F NH (65) HO O N O	661
	OTMS N F TMSO N F	SnCl4, McCN, -20 to -25°, 24 h	$ \begin{array}{c} $	642
Ac Me N MeO ₂ C		SnCl4, MeCN, rt, 1 h	$ \begin{array}{c} $	667
Aco OEt		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, п, 36 h 2. NaHCO ₃ 3. NH ₃ , MeOH, 5°, 12 h	MeO_2C' F NH O	660
C_9 C_9 $C_6H_3Cl_2-2,6$		SnCL4, CH2Cl2, rt, 12 h	F HO $2.6-Cl_{2}C_{A}H_{3}$ ()	637
C_{0} $C_{6}H_{4}R$		SnCl4, CH2Cl2, п, 12 h	HO \sim	637
C Ph	TMSO N F	l. SnCl₄, CHCl₃, rt, 1 h 2. NaHCO₃, MeOH 3. Ac₂O, rt, 3 h	KC_6H_4 F NH AcO N O N O N O O N O O O O O O O O	637
	TMSO N	SnCl ₄ , CH ₂ Cl ₂ , 20°, 2 d		661
<0,−C ₆ H ₁₁		SnCl ₄ , CH ₂ Cl ₂	HO $C_{6}H_{11}$ Pn R NH R F $rt, 12 h$ (37) Me 20°, 2 d (73)	637 661

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
O N N O Me	OTMS N F TMSO N	SnCl ₄ , MeCN, CH ₂ Cl ₂ , -20 to -25°, 6 h	$0 \xrightarrow{H_{1}} N \xrightarrow{V} N \xrightarrow{H_{2}} 0 \qquad (38)$	642
0 N OMe	TMSO N	SnCl ₄ , CH ₂ Cl ₂ , -13 to -15°, 3 h	$ \underbrace{\overset{O}{\swarrow}}_{N} \underbrace{\overset{O}{\swarrow}}_{N} \underbrace{\overset{O}{\swarrow}}_{N} \underbrace{\overset{NH}{\swarrow}}_{F} ^{(78)} ^{(78)} ^{(78)} \underbrace{\overset{O}{\rightthreetimes}}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}_{F} \underbrace{\overset{O}{\circlearrowright}}_{F} \underbrace{\overset{O}{\circlearrowright}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{O}{\o}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{\overset{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O}{\longleftrightarrow}_{F} \underbrace{O} \underbrace{O}{\longleftrightarrow}_$	642
,Ac M OMe		SnCl ₄ , MeCN, -20 to -25°, 24 h	$ \begin{array}{c} $	642
McO AcO OAc		SnCl4, MeCN, -78°, 15 min; 25°, 20 h	$ \begin{array}{c} O \\ F \\ N \\ MeO \\ MeO \\ \end{array} $ (60)	663
Aco OEt		l. SnCl4, MeCN, 30°, 1 d 2. NH3, McOH	$AcO OAc$ NH_{2}	555
		1. SnCl4, MeCN, 30°, 1 d 2. NH3, MeOH	O NH (89)	555
MeO MeO		SnCl ₄ , Cl(CH ₂) ₂ Cl, 23–25°, 1 h	Aco NH (84)	671
	OTMS N F TMSO N	1. SnCl4, CH ₂ Cl ₂ , π, 12 h 2. NaHCO ₃ , MeOH	HO O O O O O R = O O O O O O O O O O O O	637
		SnCl4, CH2Cl2, rt, 3 h	I (51)	641
BzO Ci	TMSO	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 17 h	BzO NH (61)	643
Ph OAc		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, Ph rt, 18 h 2. NH ₃ , MeOH	Ph O O O O O O O O O O O O O O O O O O O	658
	TMSO N S	1. SnCl4. Cl(CH2)2Cl, rt, 18 h 2. NH3, MeOH	$\begin{array}{c} 0 \\ HN \\ HN \\ Ph \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} R \\ H \\ S \\ Ph \\ (41) \\ Ph \\ (33) \\ \end{array}$	658

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ , CH ₂ Cl ₂ , rt, 12 h	$MeO $ $(32) + N^{3} \cdot isomer (5)$	677
$\begin{pmatrix} 0 \\ -0 \end{pmatrix} C_6 H_4 OAc-o$		SnCl4, CH2Cl2, rt, 1 h	$HO \longrightarrow O \\ HO \longrightarrow O \\ H$	641
O Ph		SnCl4, CH2Cl2, rt, 1 h	O-AcOC ₆ H ₄ O F N HO O V O O V O O V O O O V O O V O O V O O V O O V O O V O O V O O V O O V O O O O V O O O O O O O O	637
AcO OAc ACO OAc OAc	Bz TMS	SnCl4, Cl(CH2)2Cl, rt, 5 h	Ph^{r} $NHBz$ NHZ $NHBz$ NHZ NZ NZ NZ NZ NZ NZ NZ N	678
\mathcal{O} \mathcal{R}^1 \mathcal{R}^2 \mathcal{R}^2	OTMS N F TMSO N	1. SnCl ₄ , CH ₂ Cl ₂ , π, 12 h 2. (see below) 3. (see below)	$R^{3}O$ N O R^{1} R^{2} R^{2}	637
R ¹ R ² o-OEt H o-OAc H p-OEt H o-OMe m-OMe p-OMe m-OMe p-OAc m-OMe		2 3 	$ \frac{R^{3}}{H} (20) $ Ac () H (18) H (13) H (43) H (70)	
F O OAc		ՏոCl4, Cl(CH ₂) ₂ Cl, rt, 4.5 h	$F \xrightarrow{X} N \xrightarrow{N} O \xrightarrow{R^1} X \xrightarrow{Me} CH (70) \\ H N (31)$	679
ACO OAC	R^2 N	SnCl4, Cl(CH ₂) ₂ Cl, rt, time	ACU UAC R^{1} R^{2} R^{2} R^{1} R^{2} $R^{$	680

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLEIH	REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PRO	OTECTED SUGARS - ShCL	CATAL VST (Continued)
I ADLU III,	REACTIONS OF SILTEATED TIETEROCTCLIC DASES WITH I R	STECTED SUGARS - SIICIA	CATALISI (Communeu)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs
2	Ac TMS		NHAc	
	, Î	SpCL CVCH-)-Cl	N (67)	(05
CAC CAC	N I	60°. 12 h	MeO ₂ C (07)	695. 606
OAc	TMSO	00,121	OAc OAc O	090
			OAc	
				~ I
	o to	SnCl _{4,} MeCN, rt, 24 h	R =	7 548,
	TMS		AcO O	Ac
leo OAc				
	Ph \		Ph	
		SnCl _{4.} MeCN,	(48)	698
	0-\ <u>N</u> 0	35-40°, 18 h	0~ \ <u>N</u> ~ 0	
	TMS		R	
	TMSO		Ő,	
)—o	SnCl ₄ , Cl(CH ₂) ₂ Cl,	$ \sum_{n=1}^{\infty} NH $ (70)	699
	N ↓ N	rt, 16 d	0 N N N	
	ÓTMS		R	
	TMSNH		HaN	
)s	Sact CVCU) CI	$\rightarrow N$ (60)	700
	NNN	25° 5 h	s (60)	/00
	 OTMS	25,51	in R	
	N ∧	Socia Cl(CHabaCl	\mathbb{N} H	701
	N STMS	n, 8 d	N S I (51) I bis(product) II (61)	701
	тмs		Ŕ	
		SnCl ₄ MeCN, rt, 8 d	I (28) + bis(product) II (66)	701
		SnCl ₄ , Cl(CH ₂) ₂ Cl,	I (42) + bis(product) II (52)	701
	D	reflux, 45 min	ام	
	N N		N	
	\mathbf{R}^2	SnCl ₄ , Cl(CH ₂) ₂ Cl	$\ell \sum_{\mathbf{R}^2}$	
	<u>K' K</u>	rt. 18 h	$\frac{\kappa \cdot \kappa^{-}}{NO_{2}} = \frac{N^{-1}}{Br} $	702
	Me CN	rt, 24 h	Me CN (38) (16)	703
	CO ₂ Me CH ₂ CN	rt, 16-20 h	CO_2Me CH_2CN (95) (—)	704
	-	rt, 6 h	CO_2Mc CH_2CN (38) (19) - β -isomer	705
		_	CH ₂ CN CO ₂ Me (35) (30)	706
		rt, 6 h	CH_2CN CO_2Me (57) (—)	707
	CO ₂ Et Me	reflux, 2 h	$\begin{array}{cccc} CO_2 Et & Me & (43) & (6) \\ CO_2 Et & Me & (42) & (12) \\ \end{array}$	708
	TMSO CONU	CH-CL et 12 h	$CO_2EI ME (43) ()$	710
	IMSO CONH ₂	CH ₂ Cl ₂ , rt, 12 h	CONH_2 Of $()$ $()$	/10
	H ₂ NOC		CONH ₂	
		SnCl ₄ , Cl(CH ₂) ₂ Cl	\mathcal{L} (14)	241
	т́мѕ		Ŕ	
	sPh		sPh	
	·>		\vec{r} ()	711

TABLE III, REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SpCI	CATALYST	Continued		
She was a start and a start an	+ CHIMPICI	Commucu		
Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
-------	--	---	--	-------
	MeO ₂ C N OTMS	SnCl4.	$MeO_{2}C$ NH (36) $R =$ AcO AcO OAc	712
		IS SnCl4, MeCN, rt, 20 h	$ \begin{array}{c} HO_2C \\ N \\ R \\ R \end{array} $ (88)	713
	TMSO N NHT	'MS SnCl4, MeCN, Cl(CH2))2Cl, rt, 16 h	$H_2 NOC $ $N O (85)$ $R O (85)$	713
	TMSO N R'	1. SnCl4, Cl(CH ₂) ₂ Cl, reflux, 8 h; rt, 12 h 2. NH ₃ . MeOH. 0°. 4 d	$HO \qquad O \qquad R^{1} \qquad 3NO_{2} \qquad (51) \qquad BO \qquad B$	714
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 0-5°, 1 h	$\begin{array}{c} CN \\ \downarrow \\ N \\ R \end{array} \qquad (57) \qquad R = \begin{array}{c} AcO \\ \downarrow \\ AcO \\ AcO \\ OAc \end{array}$	715
	TMSO	SnCl ₄ , Cl(CH ₂) ₂ Cl, 0-5°, 30 min; rt, 15 h	(86)	715
	TMSO N	 SnCl₄, Cl(CH₂)₂Cl, reflux, 8 h; rt, 12 ht NH₃, MeOH, 0°, 4 d 	$ \begin{array}{c} $	714
	TMSO N	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 18 h	Br (97) N O R (97)	716
	R ¹ OTMS N [∠] N	SnCl ₄ , Cl(CH ₂₎₂ Cl, rt, 30 min	$ \begin{array}{cccc} R^{1} & & & \\ & & & & $	253
		SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 15 min	$ \begin{array}{c} $	253
		SnCl4, Cl(CH2)2Cl, rt, 30 min	$CI \xrightarrow{V} O^{-} (76)$	253
	TMSO N	SnCl4, Cl(CH2)2Cl, π, 2 h	$ \begin{array}{c} CN \\ N \\ N \\ R \end{array} $ (73)	715
	TMSO N	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 45 min	R = AcO -	715

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ , MeCN, п, 3 h	$R = AcO \longrightarrow AcO \square AcO \longrightarrow AcO \ AcO \ AcO \ AcO \ AcO \ $	514b
	OTMS N TMSO N NHTMS	SnCl ₄	$ \begin{array}{c} $	717
	TMSO F CF3 N CF3 TMSO N	SnCl ₄	$CF_3 \xrightarrow{F} O$ $CF_3 \xrightarrow{V} NH O$ ()	718
	N(TMS) ₂ N TMSO	SnCl4, McCN	$HO \xrightarrow{\mathbf{R}} HO \xrightarrow{\mathbf{NH}_2} HO \xrightarrow{\mathbf{R}} HO \mathbf$	719
	TMSO N CO2Et	SnCl4, CH2Cl2, rt, 30 min	$ETO_2C \qquad \qquad$	542
	TMSO N CO ₂ Me	SnCl4, Cl(CH ₂) ₂ Cl, rt, 72 h	$O_{R}^{CO_{2}Me}$ (40) + $N^{1}N^{3}$ -bis(isomer) (14)	720
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 20°, 8 h	$ \begin{array}{c} $	721
	OTMS	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 2.5 h	(91) N O (91)	722
	O N OTMS	SnCl ₄		723
		SnCl4, Cl(CH ₂₎₂ Cl, п, 16 h	$ \begin{array}{c} \mathbf{NH}_{2} \\ \mathbf{N}_{N} \\ \mathbf{N}_{N} \\ \mathbf{R} \\ \mathbf{N}_{N} \\ \mathbf{R} \end{array} $ (59)	724
		SuCl ₄ , Cl(CH ₂) ₂ Cl, 23°, 4 h	$ \begin{array}{c} $	725
		SnCl4, Cl(CH ₂) ₂ Cl, 25°, 72 h	$M_{C} N H (4)$	239

 $TABLE {\it III.} REACTIONS {\it OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl_4 CATALYST (Continued)}$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	TMS0 N	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 24 h	$\begin{array}{c} O \\ NH \\ O \\ N \\ R \end{array} $ (86) $R = \begin{array}{c} AcO \\ O \\ AcO \\ OAc \end{array}$	726
		1. SnCl4 2. HCl, MeOH	$(16) \qquad R = \begin{matrix} HO \\ O \\ HO \\ HO \\ O \\ HO \\ OH \end{matrix}$	697
		1. SnCl4 2. HCl, MeOH		697
	N SH TMS	SnCl ₄ , Cl(CH ₂) ₂ Cl, π, 7 d	HS $(34) + K = AcO $ R $(34) + K = AcO $ R $AcO $ AcO $AcO $	727
	X N TMS	SnCl4, Cl(CH ₂) ₂ Cl, n, 7 d	$S = \bigvee_{\substack{N \\ R}}^{X} \xrightarrow{X}_{O} (30)$	727
	N TMS	SnCl4 (0.2 cq), McCN, rt	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	728
		SnCl4 (0.2 eq), MeCN, reflux	$1 (44) + N^{1}$ -isomer (9)	728
		SnCl4 (1 eq), MeCN, rt	$N_{\mathbf{N}} = \mathbf{I} (10)$	728
		SnCl ₄ (1 cq), McCN, reflux	I (7)	728
		SnCl ₄ (0.5 cq), McCN, reflux	I (41)	728
		SnCl4 (0.5 eq), MeCN, rt	I (39)	728
		SnCl ₄ (1.5 eq), MeCN, rt	I (6)	728
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 3 h	(54)	729
		SnCl ₄ , Cl(CH ₂) ₂ Cl, π, 3 h	$R = N \underset{O}{\underset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$	729
		SnCl ₄ (2.5 eq), MeCN, rt, 5 h	$N = I (60) + N^{3} \text{-isomer (24)}$	625
		SnCl4 (1.1 eq), MeCN, rt, 5 h	I (70) + N^3 -isomer (17)	625

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ (1.1 eq), MeCN, rt, 30 h	I (62) + N^3 -isomer (16) + N^1 -isomer (11)	625
		SnCl ₄ (3.6 eq), MeCN, rt, 30 h	$ \begin{array}{c} N \\ N \\ N \\ N \end{array} (42) + \\ N^{4} \text{-isomer} (15) + \\ N^{1} \text{-isomer} (26) \end{array} $ R = $ \begin{array}{c} A \text{CO} \\ A \text{CO} \\ O \text{Ac} \\ A \text{CO} \\ O \text{Ac} \\ O \text{Ac} \\ O \text{CO} \\ O \text{Ac} \\ O \text{CO} \\ O \text{Ac} $	625
	R^{I} N	SnCl4, MeCN, rt	$ \begin{array}{c} $	
	$\frac{R^1}{H} \frac{R^2}{R}$	6 h 6 h	(83) (82)	730-732 730,731
	Br H OTMS	18 h	(79) Q	732
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 24 h	$\begin{pmatrix} N \\ N \\ R \\ R \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (64)$	733
	$R^{1} \xrightarrow{5} N_{N} \longrightarrow N_{N}$ OTMS	SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux	$O = \begin{pmatrix} N & 1 & 5 \\ N & 1 & 6 \\ N & 1 & 6 \\ R & 7 \end{pmatrix} R^{1}$	734
	R ¹ 4-Me 5-Me 6 Me 7-Me 5.7-Me2	10 h 8 h 8 h 10 h 8 h	(47) (25) (50) (73) (57)	
	$R^{1} \xrightarrow{4} N$ $R^{1} \xrightarrow{5} N$ $6 \xrightarrow{7} OTMS$	SnCl4, Cl(CH2))2Cl, reflux	$\begin{array}{c} 5 \\ 4 \\ N \\ N \\ R \\ \end{array} \begin{array}{c} R \\ 1 \\ R \\ R \end{array} \begin{array}{c} 7 \\ 7 \\ 0 \\ R \\ R \end{array}$	734
	R ¹ H 4-Me 5-Me 6-Me 5,7-Me ₂	2 h 10 h 8 h 8 h 8 h	(96) (48) (37) (21) (2)	
	N N TMS	SnCl4, Cl(CH2)2Cl, rt, 3 h	N' = N = 0 $N' = N = 0$ (44)	729
	TMSNH N TMSO N S	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 4 h 2. NH ₃ , MeOH, rt, 20 h	$NH_2 R^1 H (48) R = HO O H$	525
		SnCl ₄ , Cl(CH ₂) ₂ Cl, MS, 60°, 4.5 h	Aco N N N I (25) mixture of N^1 -, N^2 -, and N^5 -isomers + N^1 , N^5 - bis(riboside) (23) + N^2 , N^5 - bis (riboside) (12)	510
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 60°, 4 h	I 3 monoriboside isomers + N^2 , N^5 - and N^1 , N^5 - bis(ribosides), 2:2:1	735

 $TABLE \ \textit{III.} REACTIONS \ OF \ SILYLATED \ HETEROCYCLIC \ BASES \ \textit{WITH PROTECTED SUGARS - SnCl_4 CATALYST} \ (\textit{Continued})$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTMS	SnCl4, Cl(CH2)2Cl, rt, 4 h	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ N \\ R \end{array} $ (52) + N ¹ -isomer (11)	257
	TMS N N Me	SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 6 h; rt, 18 h	$Me \xrightarrow{N} N \qquad (-)$	714
	O N Bn	1. SnCl4, Cl(CH2)2Cl, reflux, 8 h; 21°, 16 h 2. NaOMe, MeOH, rt, 16 h	Bn - N $N $ $R = HO $ $HO $ $HO $ $HO $ $HO $ $O $ $HO $ $O $ $HO $ O	714
	$ \begin{array}{c} F \\ F \\ R^{1} \\ H \\ F \end{array} $ OTMS $ \begin{array}{c} OTMS \\ CO_{2}I \\ H \\ F \end{array} $	Et SnCl4, Cl(CH2)2Cl, rt, 3 h	EtO_2C \downarrow R $R =$ AcO	740
	(1)	SnCl4	(15) O_2N N N N N N O_2	509
	R ¹ H TMS	CH2Cl2, п, 30 min MeCN, п, 15 h	R^{1} (22-35) (19) + N ¹ -isomer (9) + N ³ -isomer (7)	
Aco OAc		SnCl ₄ , Cl(CH ₂) ₂ Cl, 25°, 20 h	NHAc NHAc N (65) + α -anomer (3) R = AcO AcO AcO AcO AcO AcO AcO AcO	215
Aco OAc		SnCl4, MeCN	$AcO \xrightarrow{N}_{C} O \overset{N}{\downarrow} \overset{NH_2}{\downarrow} (80)$	741
Aco OAc	ACN TMS	SnCl4, Cl(CH2)2Cl, 80°, 12 h	$AcO \qquad OAC$ $AcO \qquad OAC$ $AcO \qquad OAC$ $AcO \qquad NH$ NH $NHAC$ (82)	141a

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
AcO OAc OAc OAc	TMSO N	SnCl ₄ , CH ₂ Cl ₂ , 0°, 6 h	OAc O O O O O O O O O O	675
TolO N ₃ OMe	BZ N N N N N TMS	1. SnCl4, MeCN, reflux, 3 h 2. NH3, MeOH, rt, 24 h	$HO \longrightarrow O \longrightarrow N \longrightarrow $	279
Aco Aco NHCOCF ₃		SnCl4, Cl(CH ₂) ₂ Cl, reflux, 4 h	AcO NH (80) AcO NH O	218
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, 50-60°, 5 h 2. <i>n</i> -BuNH ₂ , MeOH	$HO \rightarrow OH \rightarrow NHAc$ (58) (58)	100
CO ₂ Bn N OMe		1. SnCl ₄ , MeCN, -40 to -45°, 10 min 2. NaHCO ₃	$ \begin{array}{c} $	642
Aco OAc OAc		SnCl4, Cl(CH2)2Cl, rt, 3 h	NH (29)	753
AcO AcO AcO OAc OAc	$\frac{TMS}{I} \xrightarrow{N-N} R$	SnCl ₄ , Cl(CH ₂) ₂ Cl, 40°, 2 h	$AcO \qquad I \qquad R \qquad R \\ AcO \qquad V = N \qquad Me \qquad (72) \\ OAc \qquad OAc \qquad OAc \qquad He \qquad (72)$	754
	TMSO N F	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 5 h	AcO = F = NH (75) $AcO = OAc OAc OAc OAc OAc OAc OAc OAc OAc OAc$	540
Aco Aco Aco OAc		SnCl ₄	$ \begin{array}{c} O \\ NH \\ N \\ R \end{array} \qquad (-) \qquad R = \begin{array}{c} AcO \\ - \\ O \\ AcO \\ AcO \end{array} \right) $	б90 Лс

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

$TABLE {\it III. REACTIONS OF SILYLATED HETEROCYCLIC BASES with Protected SUGARS - SnCl_4 CATALYST ({\it Continued}) and the second statement of the seco$

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ , MeCN, Cl(CH ₂) ₂ Cl, –35°, 45 min	TolO TolO TolO N N N N N N N N	557
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 0-5°, 2 h	CI CI K CI CI II (57) + R = TolO TolO TolO TolO TolO	. 524
	TMSS N	SnCl4, Cl(CH ₂) ₂ Cl -40°, 6.5 h	0 NH (94)	494
		SnCl ₄ , CH ₂ Cl ₂ , 78°, 5 h	$S \xrightarrow{N} O$ (25)	49 4
	TMSO N R1	SnCl4, Cl(CH2)2Cl		
	$\frac{R^{1}}{TMS}$ Et CH=CH ₂ CH=CH ₂ CH ₂ OBn	20-22°, 4 h 0°, 2 h 0-5°, 2-3 h, rt, 8-10 h С _б Н ₆ , rt, 8-10 h rt, 2 h	 (51) (57) (30) + α-anomer (9) (30) + α-anomer (9) (46) 	806 84 807 808 809
		SnCl ₄ , Cl(CH ₂) ₂ Cl		
	<u>к'</u> Ме <i>i-</i> Рт	MeCN, г, 2 h MeCN (no Cl(CH ₂) ₂ Cl), 0-4°, 18 h	(65) $\alpha:\beta = 1:3$ (70) $\alpha:\beta = 1:10$	794 810
	s-Bu i-Bu TMSO OTMS		() () Q'_	718 718
	TMSO N	SnCl ₄ , Cl(CH ₂) ₂ Cl		718
	TMSO OEt N TMSO N	SnCl ₄ , Cl(CH ₂) ₂ Cl		718
	TMSO CF ₃ CF ₃ N R TMSO N	SnCl4, Cl(CH2)2Cl	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	718

 TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTMS N TMSO N	1. SnCl ₄ , CH ₂ Cl ₂ , 0°, 8 h 2. 20°, 18 h	TolO NH (85) $\alpha:\beta = 6.5$ TolO N $\beta = 6.5$	813
	TMSO F N CI	1. SnCl4, CH2Cl2, 0°, 8 h 2. 20°, 24 h	$Cl \xrightarrow{F}_{Cl} O \qquad TolO \xrightarrow{TolO}_{TolO} R = \underbrace{TolO}_{TolO} O \xrightarrow{TolO}_{TolO} O $	812
	TMSO N TMSO N Br	r SnCl ₄ , Cl(CH ₂) ₂ Cl, 0-5°	Br NH Br NH R $(71) \alpha:\beta = 1:3$	813
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, MeCN, -25°, 5 min 2. 20°, 25 min	$HN \xrightarrow{NR^{1}}_{NH} HI \xrightarrow{R^{1}}_{H} (-)$	669
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, MeCN, -25°, 5 min 2. 20°, 25 min	NH ()	669
	TMSO N Me	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, MeCN, rt, 18 h 2. R ¹ MgBr	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	512
		1. SnCl₄, Cl(CH ₂) ₂ Cl, rt, 18 h 2. NaBH ₄ 3. OH	HO HO HO HO HO HO HO HO HO HO HO HO HO H	512
		SnCl ₄ , Cl(CH ₂) ₂ Cl, MeCN, n, 3-5 h 120°, 5 min 2. 25°, 3-5 h		239
		 SnCl₄, Cl(CH₂)₂Cl, MeCN, -25°, 5 min 20°, 25 min 	I (29)	669
		1. SnCl ₄ , MeCN, -20°, 5 min 2. 25°, 3-5 h	Tolo NH Tolo NH $(57) \alpha:\beta = 1:1$ Me	239
	OTMS N N Et TMSO N	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, MeCN, -25°, 5 min 2. 20°, 25 min	$\begin{array}{c} T \cup IO \longrightarrow O \\ & & & \\ & & & \\ & & & \\ T O IO \end{array} \xrightarrow{O} \longrightarrow NH \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	669

TABLE HI. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ , Cl(CH ₂) ₂ Cl, π, 24 h	\mathbb{R}^{CO_2Mc} $\mathbb{R} = \mathbb{R}^{DO}$ $\mathbb{R} = \mathbb{R}^{D$	704
		SnCl ₄ , Cl(CH ₂) ₂ Cl, n, 6 h	$1 (50) + N^3 - \beta$ -isomer (10)	704
	$\bigvee_{\mathbf{N}}^{\mathbf{CO}_{2}\mathbf{R}^{\dagger}} \bigcup_{\mathbf{CO}_{2}\mathbf{R}^{\dagger}}^{\mathbf{CO}_{2}\mathbf{R}^{\dagger}}$	SnCl ₄ , Cl(CH ₂) ₂ Cl, π, 48 h	$N \xrightarrow[R]{} CO_2 R^1$ $I. R^1 = Me, (82)$ R^1	852
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 2 d	I , $\mathbf{R}^1 = Me$, (78)	853
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt,15 min	$I, R^{\dagger} = Me, (90)$	543
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 48 h	$I, R^1 = Et, (84)$	852
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 2 d	$I, R^{+} = Et, ()$	853
		SnCl ₄ , Cl(CH ₂) ₂ Cl, ^{12}Mc rt, 2 d	(80)	720
		SnCl ₄ , Cl(CH ₂₎₂ Cl, MeCN, rt, 5 h	N-NH (21) + α -anomer (1) (1) N-NH (21) + α -anomer (1) N - N ² .N ⁴ -bis(riboside) (29) R	850
	NHTMS N N TMS	1. SnCl4, Cl(CH2)2Cl, гі, 3.5 h 2. NH3, MeOH, гі, 4 d	HO N^{-} , N^{+} () + N^{2} -isomer () N^{-} , N^{+} + N^{4} -isomer ()	854
	N N N N TMS	SnCl ₄ (0.72 eq), Cl(CH ₂) ₂ Cl, rt, 25 h	HO OH $NC \longrightarrow CO_2Me$ (94) $R = 0$ R = 0 BzO OBz	855
		SnCl ₄	$ \begin{array}{c} $	856
	N	SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 1 h	(63) + O -riboside (2)	99
	TMSO $N^{\frac{4}{3}}_{1} R^{1}$	SnCl ₄ , Cl(CH ₂) ₂ Cl	$R^{2} \xrightarrow{\frac{3}{11}} N = O$ $R^{2} \xrightarrow{\frac{3}{11}} N = O$ R^{2} R^{2}	
	H 4-NHTMS 3-NO ₂	rt, 12 h rt, 8 h reflux, 8 h	$ \frac{1}{H} $ (85) 4-NH ₂ (97) 3-NO ₂ (72)	99, 388 856 714

TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	CONH ₂	1. SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 1.5 h 2. NH ₃ , MeOH, 11, 16 h	HO O N (69)	858
	$\frac{1}{1}$ TMSO $\frac{1}{1}$ $\frac{R^{1}}{3}$ $\frac{R^{1}}{3}$ $\frac{R^{1}}{2}$	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 18 h	HÒ OH $R^{1}\frac{3}{2}$ R^{1} R^{2}	859
	3-Et NHTMS	SnCl4, Cl(CH2)2Cl	(55) $X = \begin{bmatrix} NH_2 \\ 4 \\ K \end{bmatrix}$ $K = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$	
	X 5-F 5-F 3-F 3-Br 5-Me 5-Eı 3-F,5-F	0°, 30 min; rt, 24 h 0°, 15 min; rt, 12 h 0°, 30 min; rt, 24 h rt, 24 h rt, 18 h rt, 18 h 0°, 30 min; rt, 24 h	 (65) (61) (98) (56) (40) (55) (90) 	860 861 860 861 859 859 859
	TMSO $N = \frac{1}{N^2} \frac{1}{N^2} \frac{1}{N^2}$	SnCl ₄ , Cl(CH ₂) ₂ Cl	$R'\frac{3}{2}\frac{1}{N}N = O$	
	3-Cl 3-Cl, 4-Cl 4-Cl, 5-Cl 4-Cl, 5-Cl 3-NO ₂ , 4-Cl, 5	45°; rt, 1.5 h reflux, 45 min [SnCl ₄ only] reflux, 45 min 5-Cl reflux, 0.5 h	(98) (92) (55) (88) (62)	524 524 862 863 524
	CN U U N N	SnCl ₄ , Cl(CH ₂) ₂ Cl, reflux, 30 min	$ \begin{array}{c} $	253
	CN OTMS	SnCl4, Cl(CH2)2Cl, rt, 30 min	$ \begin{array}{c} CN \\ \bullet \\ \bullet \\ N^{-N} \\ \vdots \\ R \end{array} $ (80) $ \begin{array}{c} BzO \\ \bullet \\ BzO \\ OBz \end{array} $	253
		SnCl4, Cl(CH2)2Cl, rt, 30 min	$CI \xrightarrow{CI} 0^{-} (55)$	253
	N OTMS	SnCl ₄ , Cl(CH ₂) ₂ Cl, 15°, 0.5 h; 22°, 3.5 h	$\mathbf{N} = \mathbf{I} (60) + N^{3} \text{-isomer} (26)$	99
		SnCl₄, MeCN, 15°, 0.5 h; 22°, 3.5 h	I (38) + N^3 -isomer (26)	99

 $TABLE \hbox{ III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS-SnCl_4 CATALYST (\emph{Continued})$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	TMSS	SnCl₄, MeCN, 22°, 5 min	(97) N (97) N S R	99
	$\frac{5 N^{4}}{1 N^{3}} R^{1}$	SnCl ₄	$R^{1} \xrightarrow{3}_{2} \stackrel{1}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\underset$	
	R ¹ H 5-F 4-Me	МеСN, 22° Сl(CH ₂) ₂ Cl, п, 18 h MeCN, п, 12 h	(73) (26) (62)	99 388 822
		SnCl4, McCN, rt, 16 h	$ \begin{array}{c} O \\ I^{13}C \\ N \\ N \\ R \end{array} $ (90)	864
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 23°, 12 h	$\bigcup_{N \\ N \\ O \\ N \\ O \\ N \\ O \\ N \\ O \\ O$	90
		SnCl4, MeCN, 23°, 12 h	R I (89) + N^3 -isomer (4)	90
	OTMS N TMSS N	SnCl4, MeCN	NH I (85)	865
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 22°, 2 h	(95)	84
	B2 S N	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 30 min	$ \begin{array}{c} 0 \\ N \\ N \\ R \\ R \end{array} $ (45)	845
	TMSSe N	1. SnCl4, Cl(CH2)2Cl, 2. NaOMe, MeOH, rt	$ \begin{array}{c} O \\ HO \\ N \\ N \\ R \\ HO \\ HO \\ HO \\ OH \end{array} $	866
		SnCl4, Cl(CH2)2Cl, 22°, 2 h	$ \begin{array}{c} OMe \\ I \\ N \\ R \end{array} $ (67)	84
		SnCl ₄ , MeCN 23°, 1 h	$0 \qquad 0 \qquad 0 \qquad NH \qquad I (53) + N^3 \text{-isomer } (32) + N^3 \text{-isomer } (32) + N^3 \text{-bis(riboside)} (12)$	90, 193
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 23°, 2 h	K I (39) + N^3 -isomer (18) + N^1 , N^3 -bis(riboside) (42)	90, 193

 $TABLE \text{ HI. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl_4 CATALYST (\textit{Continued}) and a statement of the stateme$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	NHTMS	1. SnCl ₄ , Cl(CH ₂) ₂ Cl,	NH ₂	
	N	rt, 3 h	N (31)	811
		2. NH3, MeOH, rt	^ℓ _N ∕se	
			R	
	TMSO	1. SnCl ₄ , Cl(CH ₂) ₂ Cl,	o M	
	N N ME	e 22°, 1 h	Me NH (20)	126
		2. NH ₃ , MeOH, 24°, 1 h	n u s	
	0.5		R	
	OBz		OBZ BZO	
	N	SnCl ₄ , Cl(CH ₂) ₂ Cl,	N (18) $R =$	867
	TMSO	rt, 2 d		
	11130 11		R BzÓ ÓBz	
	OTMS		Q	
		SpCL	R ¹ NH	
		Bite i		
	TMSO' N			
	F	MeNO ₂ , rt, 3 h	(90)	514b
	F	C ₆ H ₆ , rt, 3 h	(34)	514b
	F	Cl(CH ₂) ₂ Cl, rt, 3 h	(48)	514b
	F	Cl(CH ₂) ₂ Cl, rt, 13 h	(99)	868
	F	MeCN, <10°, 1 h CHaCla II 4 h	(98)	5140 869
	Me		()	870
	Et	Cl(CH ₂) ₂ Cl, 22°, 20 h	(95)	84
	Bu-n	Cl(CH ₂) ₂ Cl, 22°, 5 h	(95)	84
	Bu-n	MeCN, 22°, 5 h	(84)	84
	CH=CH ₂	Cl(CH ₂) ₂ Cl, п, 16 h	(58)	808
	C≡CH	Cl(CH ₂) ₂ Cl, rt, 4 h	(75)	872
	c-C ₃ H ₅	$Cl(CH_2)_2Cl, rt, 2h$	(53)	873
	NO ₂	$Cl(CH_2)_2Cl, MeCN, 22^\circ, 0.$ $Cl(CH_2)_2Cl, 23^\circ, 0.1 h$	5 n (98) (97)	84 90 193
	NO ₂	MeCN, 23°, 0.1 h	(98)	90
	OMe	MeCN, п, 16 h	(62)	874
	OMe	Cl(CH ₂) ₂ Cl, 23°, 2.5 h	(53) + N^3 -isomer (27) + N^1, N^3 -bis(riboside) (13)	90, 193
	OMe	MeCN, 24°, 12 h	(90) + N^3 -isomer (3)	193, 90
	OCH ₂ CF ₃ OCH ₂ CO ₂ Et	меся, 25°, 12 h Меся п 16 h	(54)	369 874
	OTMS		BzO-J o Y	
	N N N	SnCl ₄	NH R =	126
			$\dot{\mathbf{R}}^2$ \mathbf{V}_N \mathbf{S} $\mathbf{R}_{\mathbf{S}}$	
	<u>R</u> ¹		$\frac{1}{R}$ $\frac{R^2}{R}$ B20 OB2	
	Ac	Cl(CH ₂) ₂ Cl, 24°, 3 h	$(20) + N^3$ -isomer (19) Ac	126
	COCF3 ROC	MeCN	(70-80) COCF ₃	875
	CO ₂ CH ₂ CCl ₃	MeCN	(—) n (70-80) CO ₂ CH ₂ CCl ₃	875
			0	
			R ¹ , Ŭ	
	N		∭ `NH ↓	
	TMSX		N X	
	X R ⁱ		Ŕ	
	O SO ₂ Me	SnCl ₄	()	876
	5 Ume	SIICI4, MICCIN	$(02) + 19^{-1}$ -anomer (13)	000

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SHCl4 CATALYST (Continued)
Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl ₄ , Cl(CH ₂) ₂ Cl,	\mathbf{R}^{1}	
	TMSO N		N O	
	K F C≡CH	MeCN, rt, 3 h rt. 2 h	к (45) (90)	877 872
	NHTMS	.,	NH ₂	
	TMSO N Pr-i	1. SnCl4 or SnCl4/SnBr4 2. NH3, MeOH	i - Pr (72) R = 0 HO OH HO OH	878
	AC N TMS	1. SnCl4, MeCN, <10°, 15 min; rt, 2 h 2. NaOMe, MeOH		514b
		° SnCla, Cl(CH₂)∋Cl	$Me_{N} \sim 0$	125,
	TMSS N Ac		Ac N S BZO OBZ	126
		e	$ \begin{array}{c} Me_{N} \\ H \\ H \\ H \\ R \\ R \\ R \\ NH \\ (-70) \\ R \\ $	125, 126
	o o s s	SnCl4, MeCN, 24° SnCl4, Cl(CH ₂) ₂ Cl, 24° SnCl4, MeCN, 22°, 3 h SnCl4, Cl(CH ₂) ₂ Cl, 22°, 4 h	(52) + N^1 -isomer (41) + N^1 , N^3 -bis(riboside) (3) (68) + N^1 -isomer (13) (39) + S-riboside (20) (26)	193,89a 193,89a 89a 89a
	TMSO N OTMS	SnCL4, Cl(CH2)2Cl, rt, 12 հ	$ \begin{array}{c} 0 \\ HN \\ O \\ R \\ R \\ O \end{array} $ (95)	879
		1. SnCl4, MeCN, пt, 6 h 2. NaOMe, MeOH, п, 3 h		544
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 72 h	R =	720

 $TABLE III. REACTIONS \, OF \, SILYLATED \, HETEROCYCLIC \, BASES \, WITH PROTECTED \, SUGARS - \, SnCl_4 \, CATALYST \, (\textit{Continued})$

 $TABLE \textit{ HI. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl_4 CATALYST (\textit{Continued}) and a statement of the stateme$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		SnCl4, MeCN,	$H_{N} = \begin{bmatrix} 0 & B_{ZO} \\ 0 & R_{ZO} \end{bmatrix}$	881
	TMSO N S Bu-t	rt, l h	O N S Bu-r BZO OBZ	
	NHTMS	$SnCl_4, Cl(CH_2)_2Cl,$	NHTMS (87)	882
	N OTMS	25°, 3 h	$H \qquad (60)$	883 883
			$R = C_{10}H_{21}$ (62)	883
	OTMS		Q.	
		SICL CICHDAC	900	722
	j.	rt, 2.5 h		
	0 ² N			
	OTMS		0 	
	Ŋ	SnCl ₄ , Cl(CH ₂) ₂ Cl,	NH (68)	726
	TMSO	rt, 22 h	ό _N το	
			l R	
	NMe ₂ 		NMe ₂	
	N	$SnCl_4$, $Cl(CH_2)_2Cl$,	(61)	726
	TMSO	rt, i8 n	° N ∕ O	
	OTMS		Ŕ	
		G-CL M-CN		00
		SnC14, MeUN, 22°. 24 h		99
	N.	22,211	N N	
			ĸ	
	отмs 		0 	
	N	SnCl ₄ , MeCN,	NH I (93)	90
		23°, 12 h	N N O	
			Ŕ	<u></u>
		$3nCl_4$, $Cl(CH_2)_2Cl$, 23° , 4 h	I (97)	90, 84
	otms	1. SnCl ₄ , Cl(CH ₂) ₂ Cl,	NC4H8	
	Ň	22°, 4 h	N (57)	79
	TMSO	2. Pyrrolidine, rt, 3 h	N N N	
	OTMS		R	
			R ⁱ	
	N´ Ň	SnCl ₄ , Cl(CH ₂) ₂ Cl		884
	TMSO N		···`N∕ ≫o	
	<u>R'</u> NHCH ₂ CO ₂ H		κ (26) + bis(tiboside) (9)	
	NHCH ₂ CO ₂ Me		$(58) + R^{1} = NHCH_{2}CO_{2}H (5)$	
	OTMS		Q	
		SpCL CI(CH_)_CI	R	
	N	511014, 01(0112)201	N	
	TMSO' N		N `U R	
	<u>R</u> ¹		-	
	Br	rt, 6 h	(87)	885 872
	c-⊂3H5 N-mornholinvl	rt, 27 n rt, 6 h	(30) (71)	885
	3-furyl	rt, 2 h	(88)	546
	SMe	rt, 8 h	(70)	885
	SBn	25°, 12 h	(82)	885

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yicld(s) (%)	Refs.
	STMS N I R ¹ TMSO N ^N	SnCl ₄ , Cl(CH ₂) ₂ Cl		
	R ¹ SMe SBn OTMS	rt, 6 h rt, 8 h	к (80) (84) О	886 886
		SnCl ₄ , C ₆ H ₆ , 25°, 18 h	$Me_{N} \downarrow_{NH} (18)$	239
	TMSO N Ac	SnCl4. MeCN, rt, 94 h	$ \begin{array}{c} Ac & Me \\ O & N & O \\ R & \\ R & \\ \end{array} $	239
	R^{2} R^{2	SnCl ₄ , Cl(CH ₂) ₂ Cl reflux, 40 min; rt, 30 min	$ \begin{array}{c} $	887
	H Me S Br N TMS OTMS	SnCl4, Cl(CH2)2Cl, rt, 24 h	(69) Br (25) + N^3 -isomer (11) R HN	849
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 18 h 2. NH ₃ , MeOH, rt, 24 h		888
	O ₂ N N TMS	SnCl4, MeCN, rt, 12 h	$\bigvee_{\substack{N \\ N \\ R}} \bigvee_{\substack{N \\ R}} \bigvee_{\substack{N \\ \alpha \text{-anomer}}} (11) \qquad BzO \qquad BzO$	889
		SnCl ₄ . Cl(CH ₂) ₂ Cl/MeCN (1:1), 0°, 7 h	$0 = \bigvee_{\substack{N \\ i \\ R}}^{N} (23) + N^{3} \text{-isomer (19)}$	890
		SnCl4, Cl(CH ₂) ₂ Cl/MeCN (1:1), 0°, 7 h	$O = \bigvee_{\mathbf{N}}^{\mathbf{N}} \bigvee_{\mathbf{N}}^{\mathbf{N}} (31)$	890
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 5 h	HN N R Q R Q I (18) + bis(ribosidc) (81)	891
		SnCl ₄ , MeCN, 0-5°, 0.5 h	I (81)	891

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		1. SnCl4, Cl(CH2)2Cl, п, 18 h 2. NH3, MeOH, п, 24 h	R = HO - O + HO - O	888
		1. SnCl4, Cl(CH2)2Cl. гг, 18-20 h 2. NH3, MeOH, гг, 20 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	525
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, п, 18 h 2. NH ₃ , McOH, п, 3 d	$ \begin{array}{c} $	892
		i. SnCl ₄ , Cl(CH ₂) ₂ Cl, –30°, 8 h 2. NH ₃ , MeOH		659
	R ¹ FC ₆ H₄ CiC ₆ H₄ BrC ₆ H₄ Me Ph		$ \begin{array}{cccc} $	
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt. 18 h	$HN \xrightarrow{O}_{N} S (98) \qquad R = \underbrace{B_{ZO}}_{B_{ZO}} OB_{Z}$	893
		$\Big)_n \qquad \begin{array}{c} SnCl_4, Cl(CH_2)_2Cl, \\ rt, 12 h \end{array}$	Mc N + S + N + S + N + S + N + S + N + S + N + S + N + S + N + S + N + S + N + S + S	894
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 12 h	Me N R (26)	894
		R ¹ SnCl ₄ , Cl(CH ₂) ₂ Cl, r, 12 h	$\begin{array}{c} Ph \\ N \\ O \\ O \\ R \\ R \end{array} \xrightarrow{R^{i}} R^{i} \\ H \\ Me (41) \\ Me (45) \\ R \end{array}$	894
		SnCl ₄ , Cl(CH ₂) ₂ Cl, 60°, 6 h	$N_{R} = N^{1} N^{2} N^{5} - \text{isomer} (7) + N^{5} - \text{isomer} (12)$ $+ N^{1} N^{5} - \text{bis}(\text{riboside}) (38)$ $+ N^{2} N^{5} - \text{bis}(\text{riboside}) (9)$	735, 510
	N N N Ph	1. SnCl4, Cl(CH ₂) ₂ Cl, rt, 18 h 2. NH ₃ , McOH, rt, 24 h	$\begin{array}{c} Ph_{N} \\ N \\ HO \\ O \\ \end{array} $	888

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	Mes N TMS	SnCl4, Cl(CH ₂) ₂ Cl, reflux, 2 h	$NC \qquad SMe \\ N \qquad N \qquad N \qquad SMe $ $R = \qquad BzO \qquad OBz \\ BzO \qquad OBz$	895
		1. SnCl4, Cl(CH ₂) ₂ Cl, 48-72 h 2. NH3, MeOH	HO HO HO OH N N N N N N N N N (73) $N^7:N^9 = 1:1$	101
	TMSO N TMS	SnCl ₄ , Cl(CH ₂) ₂ Cl rt, 18 h	$\begin{array}{c} NH_2 \\ N \\ $	896
	AcN N TMS	SnCl4, MeCN, n, 4 h	$\bigvee_{\substack{N \to NH \\ R}}^{N} \bigvee_{\substack{N \to NHAc}}^{NH} (81) N^{7}:N^{9} = 3:1$	142
		SnCl4, Cl(CH ₂) ₂ Cl, rt, 4 h	(60)	897
		SnCI ₄ , Cl(CH ₂) ₂ Cl, rt, 30 h	$ \begin{pmatrix} 0 \\ N \\ N \\ N \\ R \\ R \end{pmatrix} $ (56)	898
		SnCl4, MeCN, rt, 30 h	$ \begin{array}{c} $	898
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 15 min	N + N + O + O + O + O + O + O + O + O +	543
		SnCl4, Cl(CH2)2Cl, rt, 1 h	$\bigvee_{\substack{N \\ R \\ Q}} \bigvee_{\substack{N \\ R \\ Q}} \bigvee_{\substack{N \\ Q \\ Q}} OBn \qquad I (56) + N^3 \text{-isomer II} (13)$	899
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 3 d	N = N = N = 0 $N = N = 0$ $N = 0$	900
		SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 12 h	$N + (38) + NH = N^{1} \mathcal{N}^{5} \text{ and } N^{1} \mathcal{N}^{6} \text{ bis(ribosides) (58)}$	543
	TMSO N	SnCl ₄ , Cl(CH ₂) ₂ Cl, rt, 24 h	$ \begin{array}{c} N \\ N \\ N \\ N \\ R \end{array} $ (31)	743

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	TMSO N S	SnCl4, Cl(CH ₂) ₂ Cl, rt, 4 h	$HN \rightarrow K = K + K + K + K + K + K + K + K + K +$	901
	TMSO N S	SnCl ₄ , Cl(CH ₂) ₂ Cl, n, 15 h	$BzO \longrightarrow OBz (-)$ $BzO \longrightarrow N (-)$ $BzO \longrightarrow N (-)$	901
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, п, 18 h 2. NH ₃ , MeOH, п, 24 h	HO = O = O = O = O = O = O = O = O = O =	888
		SnCl4, Cl(CH ₂) ₂ Cl, reflux, 1 h	$O = \bigvee_{\substack{N \\ R}}^{R^{1}} \qquad \qquad \begin{array}{c} \frac{R^{1}}{H} \qquad \qquad BzO \\ H \qquad \qquad (56) \qquad R = \\ CO_{2}Mc \qquad (69) \qquad \qquad BzO \qquad OB$	902 z
	EtO ₂ C-N N TMS	SnCl4, Cl(CH2)2Cl, MeCN, 0°, 7 h	$O = \bigvee_{\substack{N \\ \\ R}}^{H} N - CO_2 Et \qquad (20) + \lambda^3 \text{-isomer (15)} + \lambda^4 \lambda^3 \text{-bis(riboside) (13)}$	890
		SnCl4, CH2Cl2, MeCN	$HN = H + (39) + N^{3}$ -isomer (2) $HN = N + N + N^{3}$ -isomer (2)	507
	N OTMS	SnCl ₄ , MeCN, 22°, 42 h		99
	$R^{\frac{6}{7}}$ N $CO_2R^{\frac{7}{2}}$	snCl4, Cl(CH2)2Cl	R^2O_2C 6 R^1	
	$\frac{\mathbf{R}^1}{\mathbf{H}}$ $\frac{\mathbf{R}^2}{\mathbf{E}}$	22º 1 h	R (82)	99
	n Et 7-Me Fr	22°, 2 n rt, 3 h	(82)	740
	6-F Et	rt. 3 h	(83)	740
	6,7-F ₂ Et	rt, 3 h	(94)	740
	6-F,7-Cl H 6-F,7-Cl Fr	rt,3 հ rt,3 հ	(18) (60)	740 740
		1. SnCl ₄ , Cl(CH ₂) ₂ Cl, п, 18 h 2. NH ₃ , MeOH, п, 24 h		888
			но он	

 $TABLE \hbox{ III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl_1 CATALYST (Continued)$

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

TABLE III. REACTIONS OF SILYLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl4 CATALYST (Continued)

 TABLE III. REACTIONS OF SILVLATED HETEROCYCLIC BASES WITH PROTECTED SUGARS - SnCl₄ CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
BzO BzO BzO BzO OBz	OTMS N TMSO N	SnCl4, MeCN, rt, 2 d	$B_{ZO} \xrightarrow{O} O \xrightarrow{O} NH (72)$	871
BzO BzO OBz	TMSO N	SnCl4, MeCN		918
BzO BzO BnO OBz		SnCl ₄ , Cl(CH ₂) ₂ Cl. 40°, 4 h	BzO OBz OBz OBz OBz OBz OBz OBz OBz OBz	922

 $TABLE III. REACTIONS \, OF \, SILYLATED \, HETEROCYCLIC \, BASES \, WITH \, PROTECTED \, SUGARS - \, SnCl_4 \, CATALYST \, (\textit{Continued})$

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C3 MeOOMe		TMSOTf, CH2Cl2, –30°, 2-12 h	MeO NH (74)	923
	Bz _{∼N} ∠TMS I Me	TMSOTf, Et ₃ N, ZnI ₂ , PhMe, rt, 48 h	$M_{c_{N}}B_{z} \qquad (63)$ $R = S$	414
	TMSO N	TMSOTf, Et3N, ZnI2, PhMe, rt, 48 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	414
		TMSOTf, E13N, ZnI2, PhMc, rt, 48 h	(61)	414
		TMSOTf, E13N, ZnÍ2, PhMc, rt, 48 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	414
		TMSOTf, Et ₃ N, ZnI ₂ , PhMe, rt, 48 h	(59)	414

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES

Sugar	Rase	Conditions	Product(s) and Vield(s) (%)	Refs
U	Dax			
MeO Br		TMSOTf, CH ₂ Cl ₂ , -30°, 2-12 h	MeO	923
MeO OMe MeO		TMSOTf, CH ₂ Cl ₂ , _30°, 2-12 h	$Br \longrightarrow O \\ R' \longrightarrow NH \\ MeO \longrightarrow O \\ R' \longrightarrow O \\ F (83)$	923
N OAc	TMSO N	TMSOTf,CH2Cl2, 25°, 3 հ	$MeO \longrightarrow NH (70)$	924
MeO OMe		TMSOTf, CH ₂ Cl ₂ , 30°, 2-12 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	923
		TMSOTf, CH ₂ Cl ₂ , 30°, 2-12 h	$MeO_2C \longrightarrow O$ $F \longrightarrow O$ $EtO \longrightarrow O$ $Br \longrightarrow O$ (71)	923
		TMSOTf, CH ₂ Cl ₂ , 30°, 2-12 h	$ \begin{array}{c} \mathbf{R}^{\mathrm{I}} & \mathbf{N} \mathbf{H} & \mathbf{R}^{\mathrm{I}} \\ \mathbf{N} & \mathbf{N} \mathbf{H} & \mathbf{II} & (56) \\ \mathbf{E} \mathbf{I} & \mathbf{N} & \mathbf{F} & (91) \\ \end{array} $	923
N ₃ AcO		TMSOTf, MeCN, -40 to 0°, 6 h; rt, 16 h	$ \begin{array}{c} $	925
	i-PrCO _N TMS	TMSOTf, McCN, -40 to 0°, 4 h; rt, 24 h	NHCOPr-i N (24) + N α -anomer (10)	925
		TMSOTf, MeCN, -40 to 0°, 8.5 h rt, 16 h	(18) + (18) + (18) + (18) + (18) + (7)	925
		TMSOTf, MeCN, 40 to 0°, 4 h	NHCOPr- i N N (5) + N N (2) R (2)	925
Ac0 Ome	NHIMS	TBDMSOTf, McCN, 25°, 12 h	Aco N N NH_2 (80) $\alpha:\beta = 1.4:1$	926

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILVE AND SILVER TRIFLATES AND PERCHLORATES (Continued
TABLETT, REACTIONS WITH TRIMETHILSILIE AND SILVER TRI LATES AND TERCHEORATES (commuca

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATE	S (Continued)
--	---------------

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV	REACTIONS WITH	TRIMETHYLSILYL	AND SILVER 1	FRIFLATES AN	D PERCHLORATES	(Continued)
INDEL IV.	REACTIONS WITH	I INMETHICSIETE.		INI LATES MA	DIERCHEORATES	(Commuca)

Sugar	Base		Conditions		Product(s) and Yield(s) (%)	Refs
		D 2	1. TMSOTf, CHCl3, гt 2. NaOEt, EtOH	R^1 NH R^2 N O	$R = \int_{TolO}^{TolO} \int_{TolO}^{O}$	
		H	— 1 h	K (17)	(18)	1006
	CO ₂ Et	н	_	(61)	(37)	1006
	CO ₂ Et	н	_	(74)	()	1006
		н	_	(61)	()	1006
		Me	_	(10)	()	1006
	Br	н		(31)	()	1006
	CO ₂ Et	Ме		(25)	()	1006
	CO ₂ Et	н		(74)	()	1006
	SCF ₃	н	62°, 4 h	(85)	()	1007, 1008
	SO ₂ CF ₃	н	62°, 3 h	(89)	()	1007
	TMSO N	Ē	TMSOTf, dioxane. 90°, 4 h	F ₃ CS	(67) 'O	1007
			TMSOTf, McCN, π, 2 h		(67) + α-anomer (12)	1009
	тмs_ <i>p-(n-Bu</i>)C ₆ H ₄	N N H	TMSOTf, Cl(CH ₂) ₂ Cl, C ₆ H ₆ , rt to reflux, 2 h		(18) + $N^7 \beta$ -isom $C_6H_4(Bu-n)-p$ + $N^7 \alpha$ -isom	er (16) 505 er (6)
			1. TMSOTf. CHCl ₃ , rt, 3 h 2. NH ₃ , MeOH		(65) + α -anomer (35) R = HO HO	ک 893
		45	1. TMSOTf, Cl(CH ₂) ₂ Cl, reflux, 3 h 2. NaOMe	NH2 N N N N N N N N	(39) H ₂	1010
		∕⊨o	TMSOTf, 110°, 30 min	o	$S \longrightarrow NH (14) \alpha, \beta \text{ mixture}$	954

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		TMSOTf, Cl(CH ₂) ₂ Cl, 24°, 10 or 24 h	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ R \\ R \\ R \\ R \\$	133, 193
		TMSOTf, Cl(CH ₂) ₂ Cl, 24°	$NH = I (47) + N^{3} \text{-isomer (18)} + N^{1} N^{3} \text{-bis(riboside) (12)}$	193
		TMSOTf, MeCN, 24°	I (71) + N^3 -isomer (2) + N^1 , N^3 -bis(riboside) (11)	193
	OTMS	TMSOTf, Cl(CH ₂) ₂ Cl, MeCN, 4 to 24°, 2 h	I (75) + N^3 -isomer (4) + $N^1 N^3$ -bis(riboside) (11)	133
	TMSO	TMSOTf, Cl(CH ₂) ₂ Cl. 24°, 3 h	$NH \qquad (82) + N^{3} \text{-isomer (9)}$	133, 193
		TMSOTf, MeCN	$ \begin{array}{c} $	256
	TMSS N N	TMSCIO ₄ , Cl(CH ₂) ₂ Cl, 82°, 3 h	NH (67)	132
		TMSOTf, Cl(CH ₂) ₂ Cl, 25°, 18 h	HN I (14) $R = \begin{bmatrix} B_Z O \\ O \\ B_Z O \\ B_Z O \\ O \\ B_Z O \\ O \\ O \\ B_Z O \\ O \\ O \\ B_Z O \\ O \\ B_Z O \\ O \\ O \\ B_Z O \\ O \\ O \\ O \\ B_Z O \\ O $	162
		TMSOTf, Cl(CH ₂) ₂ Cl,	I (10)	162
		60°, 1 п ТМЅОТƒ, С ₆ Н ₆ , 25°, 18 h	I (7)	162
	NC	TMSOTf, MeCN		
	тмs	0-n, 6 d 0-5°, 1 h	R I (53) + N ¹ -isomer (47) I (96) + N ¹ -isomer (4)	1049 1049
		TMSOTf, McCN, 0-5°, 2 d	K SMe (89)	1049
		TMSOTf, McCN, rt, 12 h	$H \rightarrow H \qquad (82)$	362
	$Ac \sum_{N} TMS CN CN CN N CN N CN N CN N CN N CN N C$	TMSOTf, Cl(CH ₂) ₂ Cl, rt, 1 h; 80-85°, 20 h	$Br \xrightarrow{NC}_{N} NHAc \\ Br \xrightarrow{N}_{R} N $ (90)	1050

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)							
Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.			
	O ₂ N N TMS	TMSOTf, Cl(CH ₂) ₂ Cl, π, 6 h	N N R (64)	1051			
		1. TMSOTf, Cl(CH ₂) ₂ Cl, reflux, 1 h 2. NaOH, EtOH	HO OH (81)	1052			
		TMSOTf	$\begin{array}{c} BzO \\ & \\ BzO \\ & \\ BzO \\ & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1053 1053			
		TMSOTf, Cl(CH ₂) ₂ Cl, 25°, 24 h	MeS (76) $R = $ R $BzO O$) 1054 Bz			
		TMSOTf, Cl(CH ₂) ₂ Cl, π, 1 h; 75-80°, 18 h; reflux, 3 h	$Br \xrightarrow{N}_{R}^{N \cap 2} (88)$	1050			
	XTMS N-N TMSO	ТМSOTf, Cl(CH2)2Cl, п, 6 h	XH XH XH R XH (78) (55) R	361 361			
		TMSOTf, Cl(CH ₂) ₂ Cl, त, 6 h	$N_{H} = \frac{1}{R} = \frac{1}{R$	361			
	R^2 N	TMSOTf, McCN	$ \begin{array}{c} $				
	R ¹ R ² Br H CN H Ph Br	reflux, 1 week –20° to rt, 4 h rt, 16 h	(29) (46) (67)	1055 1055 1056			
		TMSOTf, McCN, π, 12 h	N N R N K N K (56)	362			
	BZ N N N N N N N N N N N N N N N N N N N	TMSOTf, Cl(CH2)2Cl. PhMe, π, l h	NHBz (92)	1048			

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

 $TABLE \ IV. \ Reactions \ with \ Trimethylsilyl \ and \ Silver \ Triflates \ and \ Perchilorates \ (Continued)$

TABLE IV. REACTIONS WITH TRIMETHYLSILYL AND SILVER TRIFLATES AND PERCHLORATES (Continued)

^{*a*} The 1- β -methoxy sugar does not react under these conditions.

TABLE V. REACTIONS WITH TITANIUM TETRACHLORIDE AS CATALYST

TABLE V. REACTIONS WITH TITANIUM TETRACHLORIDE AS CATALYST (Continued)

TABLE V. REACTIONS WITH TITANIUM TETRACHLORIDE AS CATALYST (Continued)

TABLE V. REACTIONS WITH TITANIUM TETRACHLORIDE AS CATALYST (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
BzO-OBz OBz	NHBz N N N N N HgCl	1. TiCl4, Cl(CH ₂) ₂ Cl, reflux, 2 h 2. NaOMe, MeOH, reflux, 1 h	$HO \longrightarrow OH OH (31-39)$	1079
TBDPS O OAc		TiCl4 (1-6 eq), Cl(CH ₂) ₂ Cl, rt	TBDPS O NH $(65) \alpha:\beta = 15:85$ SPh	228, 229

TABLE VI. REACTIONS WITH BORON TRIFLUORIDE ETHERATE AS CATALYST

TABLE VI. REACTIONS WITH BORON TRIFLUORIDE ETHERATE AS CATALYST (Continued)

TABLE VI. REACTIONS WITH BORON TRIFLUORIDE ETHERATE AS CATALYST (Continued)

TABLE VI. REACTIONS WITH BORON TRIFLUORIDE ETHERATE AS CATALYST (Continued)

TABLE VI REACTIONS WITH BORON TRIFLUORIDE ETHERATE AS CATALYST (Continued)

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C22 TBDPSO		TiCl ₂ (OPr- <i>i</i>) ₂	TBDPSO	235
TolO- TolO		TMSCI, Nal, MeCN		137
$R^{1}O$ $R^{1}O$ $R^{1}O$ $R^{1} = TBDMS$	OTMS N TMSO N	ZnCl ₂ , THF, π, 12 h	$ \begin{array}{c} $	112
$R^{1}O$ $R^{1}O$ $R^{1}O$ $R^{1} = TBDMS$		ZnCl ₂ , THF, rt, 17 h	$ \begin{array}{c} $	112
BzO OFF		SiF ₄ , MeCN, 0°, 2 h	$R^{I} \xrightarrow[R]{} O \\ R^{I} \xrightarrow[R]{} H \\ NH \\ H \\ O \\ F \\ (86) \\ BzO \\ OBz \\ BzO \\ OBz \\ C \\ $	118
		SiF ₄ , McCN, 0°, 2 h	(82)	118
$R^{1}O$ $R^{1}O$ $R^{1}O$ F $R^{1}O$	OTMS N TMSO N	SiF ₄ , 0°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118
BnO OFF		SiF4, MeCN, rt, 2 h	$BnO \longrightarrow NH \\ BnO OBn = I (85) \alpha:\beta = 16:84$	1109
		SiF ₄ , MeCN, 0°, 1 h	I (85) α : β = 16:84	118
		SiF ₄ , CH ₂ Cl ₂ , 0°, 0.5 h	I (80) α : β = 60:40	118
		SiF ₄ , Et ₂ O, 0°, 0.5 h	I (82) $\alpha:\beta = 55:45$	118
BnO F	отмs 1	SiF ₄ , MeCN, 0°, 1 h	I (84) α : β = 18:82	118
	N	SiF ₄ , CH ₂ Cl ₂ , 0°, 0.5 h	I (84) α : β = 68:32	118
BnO OBn	TMSO	SiF ₄ , Et ₂ O, 0°, 0.5 h	I (78) $\alpha:\beta = 60:40$	118

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₇ BzO BzO OMe BzO	OTMS N TMSO N	TMSI, MeCN, 70°	BzO BzO BzO NH (65-70)	137
BzO OMe BzO OBz	OTMS TMSO N	TCS, NaI, McCN, 70°	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ R \end{array} \xrightarrow{B_ZO} 0 \\ B_ZO \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	137
C ₂₈ BzO OAc BzO OBz	N // N I MS	TMSC1, MeCN, NaI, 24°, 20 h	(82)	1110
		TMSI, MeCN, MS, rt	NH I (89)	136
		TMSCI, McCN,	I (64-68)	137,
		TMSC!, MeCN, MS, rt, 100 min	I (89)	1111
	TMSO N	TMSI, MeCN, MS, rt	(1)	136
	TMSO N	$ZnCl_2$, MeCN, π , 3 h	$F \xrightarrow{V}_{O} BzO \xrightarrow{O}_{O} BzO Bz$	868
		TMSCI, MeCN,	R I (84)	135
		AlCl ₃ , MeCN, π , 3 h	I (38)	514b
	TMSO	TMSCI, MeCN, NaI, MS, rt, 3 h	$ \begin{array}{c} $	135
		SbCl ₅ , DME, rt, 3.5 h	R I (36)	102
	TMSS N	AICl ₃ , McCN, 22°, 4 h	$ \begin{array}{c} HN \\ S \\ R \end{array} $ (5) + S-riboside (62) $R $	89a
	NHTMS N TMSO	TMSCl, MeCN, Nal, MS, rt, 3 h	$ \begin{array}{c} $	135

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

TABLE VII. REACTIONS WITH MISCELLANEOUS FRIEDEL-CRAFTS CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C2 MeOCI	TMSO N	Bu ₄ NI, CH ₂ Cl ₂ , reflux, 2 h	MeO. (54)	399
$\begin{array}{c} C_{3} \\ X \\ \hline \\ C \\ C_{1} \\ C_{1} \\ C_{1} \\ B_{r} \\ B_{r} \\ B_{r} \end{array}$		Bu₄NF, THF, C6H6, reflux, 3 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1113
		Bu ₄ NF, THF, C ₆ H ₆ , reflux, 30 h	$Cl \longrightarrow N \longrightarrow NH_2$ (90)	1113
Br Cl		Bu ₄ NF, THF, C ₆ H ₆ , reflux, 3 h	Br(95)	1113
		Bu ₆ NF, THF, C ₆ H ₆ , reflux, 3 h		1113

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu₄NF, THF, C ₆ H ₆ , reflux, 3 h	$Br $ N NH (98) NH_2 (98)	1113
		Bu ₄ NF, Cl(CH ₂) ₂ Cl rt, 16 h	$Br NO_2 (73)$	1114
EtO		Bu ₄ NI, CH ₂ Cl ₂ , reflux, 2 h	$ \begin{array}{c} 0 \\ NH \\ EtO \end{array} $ (62)	399
		Csl, MeCN, reflux, 2 h	$ \begin{array}{ccccccc} R^{I} & & & \frac{R^{I}}{Et} & (37) \\ & & & & \\ EtO & & S & i-Pr & (31) \\ & & & c-C_{3}H_{5} & (43) \end{array} $	399
		Bu ₄ NF, Cl(CH ₂) ₂ Cl rt, 16 h	$ \begin{bmatrix} N \\ N \\ N \end{bmatrix} = NO_2 $ (76)	1114
		Bu ₄ NI, CH ₂ Cl ₂ , reflux, 45 min	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	786
	OTMS N TMSO N	1. Bu ₄ NI, CH ₂ Cl ₂ . 24°, 12 h 2. KOAc, DMF		1115
	OTMS N F TMSO N	1. H ⁺ 2. Nal, MeCN, reflux 4 h	$AcO \qquad \qquad$	639
		$CH_2Cl_2, 24^\circ, 3 h$		1116
	OTMS N I4 II TMSO ^C N	1. CH2Cl2, MS, гt, 1 h 2. NH3, MeOH, гt, 1 h	$ \begin{array}{c} 0 \\ 14 \\ C \\ N \\ F \end{array} $ (80)	1117
		C ₆ H ₆₉ -20°, 4 h	$ \underbrace{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	1118
		C ₆ H ₆ . –20°, 4 h	$ \begin{array}{c} $	1118

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
n-PrOCI	TMSO	Bu ₄ Nł, CH ₂ Cl ₂ , reflux, 2 h	n-PrO	399
i-ProCl		CsI, MeCN, reflux, 2 h	O Et NH <i>i</i> -PrO N S	399
AcO Br	$M = \frac{1}{N} + $	Bu₄NI, MeCN, rt, 4-5 h	$\begin{array}{c} 0 \\ HN \\ R^2 \\ Ac0 \\ 0 \\ 0 \\ N \\ N \\ R^1 \end{array}$	1119
	R'R'HHPhII p -ClC ₆ H ₄ HMeMePhPh2-pvridyl2-pvridyl		(53) (66) (52) (62) (60) (55)	
		MeCN, n, 2 d	$\begin{array}{c} 0 \\ R^{1} \\ AcO \\ O \\$	655 1120
		MeCN, reflux, 6 h		1121
	$ \begin{array}{c} OTMS \\ N \\ TMSX \\ N \\ X \\ $	MeCN, rt	$ \begin{array}{c} $	1122
	$S Ph$ $O Bn$ $S Bn$ $O C_6H_4NO_2-p$ Br N	MeCN, reflux, 1 h	$p - O_2 N C_6 H_4 \longrightarrow O$ (77) (61) $p - O_2 N C_6 H_4 \longrightarrow O$ $(76) N^7 : N^9 = 1:99$ $AcO \longrightarrow O_1 N^1 = N$ Br	143
		CH ₂ Cl ₂ , n, 3.5 h		1116
		C ₀ H ₆ , -20°, 4 h	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & $	1118
	OTMS N TMSO N ² N	C ₆ H ₆ , -20°, 4 h	$ \begin{array}{c} 0 \\ \hline \\ 0 \\ \hline \\ N \\ N \\ R^{1} \\ Mc \end{array} \begin{array}{c} \frac{R^{1}}{H} \\ H \\ R^{1} \\ Mc \end{array} \begin{array}{c} (-) \\ () \\ () \\ () \end{array} $	1118

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
ООМе	OTMS N F TMSO N	NaI, MeCN	$\bigvee_{F}^{O} \xrightarrow{NH} 0 = 2.5 \text{ h, } 160^{\circ} (77)$	1123 1124
BuOCI	OTMS N TMSO N	Bu4NI, CH2Cl2, reflux, 2 h	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	399
0 	TMSS	CsCl, MeCN, 25°, 1.5 h		401
	NHTMS TMSO N	CsCl, McCN, 25°, 25 h		401
		NaI (1 еq), McCN, rt, 9 h		528
	IM30 N	NaI, MeCN, 50-60°, 2 h	μ Γ (95)	394
	OTMS N TMSO N	Nal (1 eq), MeCN, 60°, 0.5 h	V V V V V V V V V V	528
		CsCl, MeCN, 25°, 3 h		401
	$\begin{array}{ccc} O & H \\ O & F \\ O & Br \\ O & NH_2 \\ O & Me \\ S & Mc \\ \end{array}$	50-55° 50-55°	(74) + N ¹ ,N ³ -bisproduct (87) (88) (50) (73) (96)	
		CsCl, MeCN	$\bigvee_{N}^{O} \xrightarrow{N}_{N} \xrightarrow{R^{2}} R^{2}$	401
	R ¹ Cl SMe NHTMS	25°, 3 h 25°, 1.5 h 25°, 5 h	R ² (96) SMe (98) NH ₂ (92)	
		CsCl, McCN, 25°, 4 h	$ \begin{array}{c} & & & \\ & & & $	401

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		CsCl, MeCN, 25°, 4 h	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	401
		3u4NI		
C.	R ¹ F Me	MeCN, 20°, 10 min CH ₂ Cl ₂ , reflux, 2 h	(43) (87)	1125 399
	STMS 0	CsI, MeCN, reflux, 2 h		400
		Csl, MeCN, reflux	AcO O O O O F 4h (51) S Me 12h (80) AcO O O O O O O O O O O O O O O O O O O	400
		Csl, MeCN, reflux, 2 h		400
		CsI, MeCN, reflux, 3 h	AcO O O O O O O O O O O O O O O O O O O	400
	NUTME	CsI, MeCN, reflux,12 h	Aco N NH (47) $N^{\theta}:N^{7} = 10:1$	400
		CsI, MeCN, reflux, 2 h	Aco O O N N SH (92)	400
		CsI, MeCN, reflux,12 h	Aco N N N N N (42) $N^9:N^7 = 7:1$	400
		CsI, MeCN, reflux, 4 h	Aco N N NH ₂ + N^{7} -isomer (15)	1126
C6H11 0 CI		CsI, MeCN, reflux, 2 h		399
		NaI, MeCN, 20°, 10 min		1125

 TABLE VIII. REACTIONS OF SILVLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILVLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
AcO Br AcO	TMSO N	1. CH2Cl2. п. 48 h 2. HCl, McOH		1128
		СН ₂ Сl ₂ , п, 48 h	HO HO R^1 N N N N H^2 H H H (-) H (-) Mc (-) Br I (-) (-) I (-)	1128
TMS CI CI		NaI, MeCN, 20°, 10 min	AcO TMS F NH (73) O O O O O O O O O O	1125
Aco		HgO, HgBr ₂ , C ₆ H ₆ , 80-100°, 5 h	Aco O NH (88)	927
С ₁₀ <i>p</i> -MeC ₆ H ₄ О.		Csi, McCN, reflux, 2 h	$p-MeC_6H_{1}$ (23)	399
PivO	TMSO N	Py, CHCl3, π, 12 h CHCl3, rt, 12 h	Pivo NH NH I (72) $\alpha:\beta = 34:66$ I (33) $\alpha:\beta = 38:62$	276 276
BnO	TMSO N	CsI, MeCN, reflux, 2 h	$ \begin{array}{c} $	656
Bz0 Cl		BU4NF, THF, C6H6, reflux, 3 h		1113
		Et ₃ N, PhMe, 90°, 18 h	i -PrO N N N NH_2 (40)	1129
	OTMS N TMSO	McCN, rt, 48 h	<i>i</i> -Pro i - Pro R^1 NH Me CH (55) K NH Me CH (58) R^1 NH Me CH (58) Me N (51) Me N (52) Ph N (66) Nh Nh Nh Nh Nh Nh Nh Nh	1130
BnO Ci		Hg(CN) ₂ , C ₆ H ₆ , reflux 1 h	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	1131

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTMS N H ₂ N N TMS	1. MeCN, п, 3 d 2. NH3, MeOH	N = 1:8	705
	$N = S^{OTMS} R^{1}$	 HgBr₂, HgO, C₆H₆, reflux, 20 h NH₃, MeOH, гт, 20 h 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	888
Aco O OAc MBr OAc	AcN M TMS TMS	Hg(CN) ₂ , C ₆ H ₆ , reflux, 17 h	$AcO \longrightarrow OAc \longrightarrow N \longrightarrow NHAc $ (62)	1134
AcO OAc OAc		Hg(OAc) ₂ , HgO, or AgClO ₄	$\dot{O}Ac$ AcO OAc OACC OAC	77
		Hg(OAc) ₂ , HgO, or AgCiO4	$Ac0 \xrightarrow{OAc} N \xrightarrow{N} NHAc (53)$	77
	TMSO N	Hg(OAc) ₂ , HgO, or AgClO ₄	AcO O O O O O O O O O O O O O O O O O O	77
Aco Aco Br	TMSO N	Hg(CN) ₂ , MeNO ₂ , 80°, 5 h	Aco Aco N N N (6)	746
AcO AcO		HgBr ₂ , HgO, C ₆ H ₆ , 110°, 2 h	R = AcO AcO AcO	80
	TMSO N	HgBr ₂ , HgO, C ₆ H ₆ , 100°, 2-5 h	$ \begin{array}{c} $	80
TolS Cl	TMSOT N	Bu₄NI, MeCN, reflux, 3 h, MeOH, 2 h	$F \xrightarrow{O}_{R} H I (96) \qquad R = F$	~ 1135
		$Hg(CN)_2, C_6H_6,$ reflux, 3 h	Г I (97)	1135
	TMSO N	Hg(CN) ₂ , C ₆ H ₆ , reflux, 3 h. MeOH, 2 h		1135

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		Ру, СНСІ ₃ , п, 12 h	$R^{1} \xrightarrow[]{NH} NH H H (53) (24)$ $R^{1} \xrightarrow[]{N} O H (52) (25)$	276, 1137 276
		CHCl ₃ , rt, 12 h		276
		Py — PhNMc ₂ 2-Picoline 2.6-Lutidine Et ₃ N 2,4,6-Collidine DMAP DBU	I (77) $\alpha:\beta = 43:57$ I (62) $\alpha:\beta = 42:58$ I (73) $\alpha:\beta = 38:62$ I (70) $\alpha:\beta = 31:69$ I (65) $\alpha:\beta = 32:68$ I (58) $\alpha:\beta = 30:70$ I (49) $\alpha:\beta = 35:65$ I (37) $\alpha:\beta = 31:69$ I (36) $\alpha:\beta = 33:67$	
$\nabla_{\mathbf{B}_{\mathbf{P}\mathbf{h}}}^{\mathbf{S}}$		TsOH, MeNO2, π, 12 h	$\begin{array}{c} Cl & \frac{R^{i}}{H} & (51) \\ N & R^{i} & Cl & (54) \\ R & R^{i} & R^{i} \end{array} \qquad R = \begin{array}{c} S & \\ O & O \\ Ph \\ \end{array}$	687
	$Me_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N}$	TsOH, MeNO ₂ , п, 12 h	$ \begin{array}{c} N \\ N \\ N \\ R \\ R \\ O \end{array} $ $ \begin{array}{c} N \\ N \\ Me \end{array} $ $ \begin{array}{c} (31) \\ N \\ Me \end{array} $	687
BnO Cl	TMSO N	1. MeCN, rt 2. H ₂ , cat.		1122
		Bu ₄ NI, Cl(CH ₂) ₂ Cl, reflux, 4.5 h	$ \begin{array}{c} $	1138
		$Hg(CN)_2$, C_6H_6 , reflux, 3 h	$ \begin{array}{c} N \\ N \\ N \\ R \\ R \\ Q_{N} \end{array} $ (43)	1138
PvO Cu		TMSI, MeCN, 0°, 3 h	$P_{VO} \longrightarrow N \longrightarrow NH_2 (76) \alpha:\beta = 1:1$	139a
p-MeOC ₆ H ₄ CO ₂	CI N TMSO N	Ру, СНСІ ₃ , п, 12 h СНСІ ₃ , п, 12 h	$p - MeOC_6H_4CO_7 \qquad \qquad$	276 59 276
MeO ₂ C AcO Br OAc		Hg(CN) ₂ , HgBr ₂ , C ₆ H ₆ , reflux, 3.5 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	767

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTMS N TMSO N			276
2-C ₁₀ H ₇ CO ₂ 1-C ₁₀ H ₇ CO ₂		Ру, CHCl ₃ , п, 12 h CHCl ₃ , п, 12 h Ру, CHCl ₃ , п, 12 h CHCl ₃ , п, 12 h	(89) $\alpha:\beta = 33:67$ (94) $\alpha:\beta = 42:58$ (51) $\alpha:\beta = 30:70$ (57) $\alpha:\beta = 40:60$	
		Bu₄NI, Cl(CH₂)₂Cl, 50°, I հ	$B_{nO} $ $NH $ (40)	1146
C ₁₇ AcO OAc		NIS, CF3SO3H, CH2Cl2, rt, 10 min	$AcO \rightarrow CO$ $R = AcO \rightarrow CO$ $R = AcO \rightarrow CO$	408
	AC N TMS	NIS, CF ₃ SO ₃ H, CH ₂ Cl ₂ , п, 45 min	$ \begin{array}{c} $	408
Aco OAc		NIS, CF3SO3H, CH2Cl2, π	(R) = (R)	408
		NIS, CF ₃ SO ₃ H, CH ₂ Cl ₂ , rt, 30 min	$ \begin{array}{c} NHAc \\ N \\ N \\ N \\ R \end{array} $ $I (87)$	408
		DMTST, MeCN, reflux, 30 min	I (83)	408
Pivo SPh		NBS, CH ₂ Cl ₂ , MS, rt, 20-30 min	Pivo NH (98) $\alpha:\beta = 9:1$	404
BnO OOOEt McO_2C		1. Me ₂ BBr, CHCl ₃ , -78 to 0° 2. Cl(CH ₂) ₂ Cl, 0°	BnO $(70) \alpha;\beta = 1:3$ MeO ₂ C NH $(70) \alpha;\beta = 1:3$	278
TBDMSO		NBS, CH ₂ Cl ₂ , MS, rt, 20-30 min	O TBDMSO N_3 N_4 (100) $\alpha:\beta = 2:1$	404

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₈ Ph	TMSO N	NBS, CH2Cl2, MS, π, 20 min	Ph O O NH NH O NH O $(88) \alpha:\beta = 1:12$	405
BnO Cl OBn	TMSS	CsI, MeCN, reflux, 0.5 h	$(80) \qquad R = O$	₩ 400
		Bu ₄ NI, Cl(CH ₂) ₂ Cl, reflux, 45 min	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	786
		Csl, MeCN, reflux, 0.5 h	$ \begin{array}{c} 0 \\ NH \\ N \\ R \end{array} $ $I (95)$	400, 1147
		$Hg(CN)_2, C_6H_6,$ rcflux, 3 h	I (23)	400, 1147
		CsI, MeCN, reflux, 1-2 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400
	OTMS N TMSO N Bn	PhMe, reflux, 24 h	$Bn \bigvee_{NH}^{O} (47)$	1148
		MeCN		
	$\frac{X \qquad R^1}{O \qquad Me}$	n	$\hat{\mathbf{R}}$ (54) + $N^1 \cdot N^3$ -bis(product) (10)	1122
	S Me	rt	(53)	1122
	O Ph	rt	(83)	1122
	U BI	n	(77)	1122
		Bu₄NI, MeCN, reflux, 2 h	$ \begin{pmatrix} V \\ N \\ N \\ N \\ R \end{pmatrix} = \begin{pmatrix} V \\ N \\$	788
	OTMS	$Hg(CN)_2$, C_6H_6 , reflux, 3 h	I (80)	788
		Bu₄NI, MeCN, reflux, 12 h	$\bigvee_{\substack{N \\ N \\ R \\ R \\ N}} NH NH I (28) + N^9 \text{-isomer (28)}$	788
		Hg(CN) ₂ , C ₆ H ₆ , reflux, 1.25 h	I (22) + N^9 -isomer (14)	788
		Cl(CH ₂) ₂ Cl, MS, reflux, 4 h	$ \begin{array}{c} N \\ N \\ N \\ R \\ R \\ O \end{array} \begin{array}{c} N \\ NH \\$	788

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Basc	Conditions	Product(s) and Yield(s) (%)	Refs.
		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 5 h	ρ-ClC ₀ H ₄ CO ₂ (37)	1144
			p -CIC ₆ H ₄ CO ₂ O N N NMe_2 N N N	
<i>p</i> ·O ₂ NC ₆ H ₄ CO ₂	····Cl N CF3 TMSO N X	Hg(OAc) ₂ , C ₆ H ₆	p-O ₂ NC ₆ H ₄ CO ₂ NH	
	X CH	25°, 18 h	p-O ₂ NC ₆ H ₄ CO ₂ (33) + α -anomer (23)	1155,
	Ν	rt, 3 d	(36)	529 1156
p-O ₂ NC ₆ H ₄ CO ₂] p-O ₂ NC ₆ H ₄ CO ₂		HgBr ₂ , HgO	p-O ₂ NC ₆ H ₄ CO ₂ p-O ₂ NC ₆ H ₄ CO ₂ P-O ₂ NC ₆ H ₄ CO ₂ R^1 R^1 R^1 R^1 R^1 R^1 R^1	997 998
BzO O Br		Cl(CH ₂) ₂ Cl, reflux, 18 h	$ \begin{array}{c} & & & \\ & $	388
		CHCl ₃ , reflux, 20 h	(61)	386
		MeCN, reflux, 5 h	$BzO \longrightarrow NH \\ BzO \longrightarrow NH \\ O \longrightarrow O \qquad I (-) \alpha:\beta = 1:4$	385
		CH ₂ Cl ₂ , reflux, 8.5 h	$I() \alpha; \beta = 1:8.5$	385
		CCl_4 , reflux, 60 h	I () α:β = 1:39	385
	TMSO N	NaI, CH2Cl2, MeCN, 17, 5 d		1157
		Nal, MeCN, rt. 7 d	BZO BZO P P NH O I (96) $\alpha:\beta = 1:3$	387
		MeCN, rt, 7 d	I (95) α : β = 1:7	387
		MeCN, reflux, 5 h MeCN, reflux, 22 h	$\mathbf{I} (\longrightarrow) \boldsymbol{\alpha}:\boldsymbol{\beta} = 1:2$ $\mathbf{I} (58) \boldsymbol{\alpha}:\boldsymbol{\beta} = 1:9$	385 387
		CH_2Cl_2 , reflux, 44 h	$\mathbf{I} () \alpha: \beta = 1:14$	385
		CHCl ₃ , reflux, 36 h	$\mathbf{I} () \alpha: \beta = 1:29$	385
		CCI ₄ , reriux, 60 h	$(-) \alpha p = 1.34$	585

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		CHCl ₃ , rt, 12-24 h	TolO NH (78-83)	261, 1170
	TMSO N ¹³ C	CHCl ₃ , rt, 12 h	$TolO \xrightarrow{O} O$ $13 \xrightarrow{I} O$ $TolO \xrightarrow{O} O$ O	1150, 1171
		CuJ, CHCl ₃ , rt, 2 h	Tolo Tolo Tolo Tolo Tolo N N N N N N N N	273, 273a
	TMSO N	Cl(CH ₂) ₂ Cl, MS, rt, 12 h	TolO TolO <i>i</i> -Pr NH	289
			$ \begin{array}{c} \overset{O}{\scriptstyle O} \\ R^{I} \\ \overset{N}{\scriptstyle NH} \\ \overset{N}{\scriptstyle R} \\ \overset{O}{\scriptstyle R} \\ \overset{O}{\scriptstyle TolO} \\ \overset$	Ť
	R ¹ Pr- <i>i</i> Bu- <i>t</i> C≡CH <i>c</i> -C ₃ H ₅ C ₅ H ₉ C ₆ H ₁₁	CHCl ₃ , rt, 20-24 h CHCl ₃ , rt, 20-24 h HgBr ₂ , Cl(CH ₂) ₂ Cl, 23°, 23 h CHCl ₃ , rt, 20-24 h CHCl ₃ , rt, 20-24 h CHCl ₃ , rt, 20-24 h	(95) (98) (67) $\alpha:\beta = 1:1.45$ (92) (96) (99)	1172 1172 872 1172 1172 1172
	TMSO N CF3	Hg(OAc) ₂ , C ₆ H ₆ , rt, 18 h Hg(OAc) ₂ , C ₆ H ₆ ,	TolO TolO TolO TolO CF_3 I (86) $\alpha:\beta = 1:2$ I (91) $\alpha:\beta = 1:2$	1173 529
	OTMS N TMSO N	25°, 3 d MeCN, MS, 25°, 2 d	TolO NH I (71) TolO $\alpha;\beta = 19:10$	1174
	OTMS N TMSO N	С ₆ Н ₆ , MS, 25°, 2 d CHCl ₃ , п, 24 h	I (66) $\alpha:\beta = 10:13$ Br NH (72) TolO O O (72)	1174 261
	TMSO N	Cl(CH ₂) ₂ Cl, 22°, 8 h	$TolO \xrightarrow{O} NH \xrightarrow{X} \alpha:\beta$ $TolO \xrightarrow{V} NH \xrightarrow{V} O \xrightarrow{Br} (88) 1.3:1$ $I (-) -$ X	1175

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Kefs.
		MeCN, MS, 25°, 2 d	HO $(10) + \alpha$ -anomer (79) Tolo (0)	1174
		СНСІ3, п, 12 h		1177a
	OTMS N CHO TMSO N	MeCN, MS, 25°, 2 d	$ \begin{array}{c} $	1174
		1. MeCN, rt, 64 h 2. NaOMe, MeOH, 6 h		1178
	R ¹ NO ₂ 2-furyl 2-thienyl 3-methyl-2-thienyl 3-methyl-2-thienyl 3- <i>n</i> -hexyl-2-thienyl 3- <i>n</i> -hexyl-2-thienyl	Cul, CHCl ₃ , r , 5 h MeCN, r , 12 h Cl(CH ₂) ₂ Cl, MS, r , 12 h Cl(CH ₂) ₂ Cl, r , 12 h Cul, Cl(CH ₂) ₂ Cl, r , 12 h Cul, Cl(CH ₂) ₂ Cl, r , 12 h Cl(CH ₂) ₂ Cl, r , 12 h Cul, Cl(CH ₂) ₂ Cl, r , 12 h	(90) mainly β () $\alpha:\beta = 2:1$ () $\alpha:\beta = 1:1.68$ () (73) $\alpha:\beta = 4.4:1$ () (87) $\alpha:\beta = 1.6:1$	273 750 750 275 275 275 275
		HgBr ₂ , Cl(CH ₂) ₂ Cl, ռ, 1 հ	TolO O N O O O N O	364
		1. MeCN, MS, 20°, 4 d 2. NH3, MeOH	TolO NH_2 HO N N N N N N N N	89
		Cul, CHCl ₃ , rt, 3 h		274

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	NHTMS		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	N R ¹			
	TMSO ⁻ N		TolO R ¹	
	<u>R'</u>	$C(CH) \subset I \rightarrow 12h$		275
	c-C3H5	Cul Cl(CH ₂) ₂ Cl, II, 12 II Cul Cl(CH ₂) ₂ Cl, 11 , 12 II	(-)	275
	2-furvl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	2-furyl	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(75) $\alpha;\beta = 3.2;1$	275
	3-furyl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	3-furyl	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(76) $\alpha:\beta = 1:1.6$	275
	2-thiophenyl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	2-thiophenyl	Cul, Cl(CH ₂) ₂ Cl, n, 12 h	(79) $\alpha:\beta = 1:1.14$	275
	2-selenophenyl	Cl(CH ₂) ₂ Cl, rt, 12 h	(—)	275
	2-selenophenyl	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(68) $\alpha:\beta = 1.2:1$	275
	2-thiazolyl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	2-thiazolyl	CuI, Cl(CH ₂) ₂ Cl, rt, 12 h	(69) $\alpha:\beta = 1:1.3$	275
	2-N-methylpyrryl	$CI(CH_2)_2CI, rt, 12 h$		275
	2-/v-metnyipyrryi	$C(CH_2)_2C(1, \pi, 12 \pi)$	$(82) \alpha; \beta = 1.4; 1$	275
	2-(5-phenyl)-thiophenyl	$C_{\rm H}(CH_2)_2C_1$, H_1 , H_2 H C_{\rm H}L C_{\rm H}(CH_2)_2C_1 rf. 12 h	(-) (59) α · β = 1·1 14	275
	Ph	Cl(CH ₂) ₂ Cl, rL 12 h	()	275
	Ph	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(49) $\alpha:\beta = 1:1.1$	275
	Ph	HgBr ₂ , MS, MeCN, rt, 10 d	(44) $\alpha:\beta = 4:1$	272
	2-pyridyl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	2-pyridyl	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(78) $\alpha:\beta = 1:1.88$	275
	3-pyridyl	Cl(CH ₂) ₂ Cl, rt, 12 h	()	275
	3-pyridyl	Cul, Cl(CH ₂) ₂ Cl, rt, 12 h	(58) $\alpha:\beta = 2.4:1$	275
	4-pyridyl	Cl(CH ₂) ₂ Cl, rt, 12 h	(—)	275
		CuI, CHCl ₃ , rt, 2 h	Tolo Tolo Tolo N N N N N N N N	273, 273a
	OTMS N TMSO N [×] N	CuI, CHCl ₃ , rt, 3 h	$R^{1} \xrightarrow{O}_{N} \frac{R^{1}}{H} (70) R = $ $R^{1} \xrightarrow{TolO}_{N} \frac{R^{1}}{H} (70) R = $ $R^{1} \xrightarrow{TolO}_{TolO} \frac{R^{1}}{H} (70) = $ $R^{1} \xrightarrow{TolO}_{TolO} \frac{R^{1}}{H} (70) = $	274
		He(CN)2, C4H4, rt. 3 d	$R^1 = H_1(25)$	1179
	OTM			
		CHCl3, rt, 12 h	$ \begin{array}{cccc} $	1180
		Hg(CN) ₂ , C ₆ H ₆ , reflux, 1.5 h	Toto Toto Toto N N N N N N N N	1134
	OTMS N TMSO TMS	1. Et ₃ N, CHCl ₃ , 0°, 1 h, H ₂ O 2. NaOMe, rt, 2-3 h	HO HO HO HO	1167

TABLE VIII. REACTIONS OF SILVLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		НgO, HgBr ₂ , C ₆ H ₆ , 100°, 7 h	$ \begin{array}{c} $	1143
		Hg(OAc) ₂ , PhMe, rt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	885
		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	$ \begin{array}{c} 0 \\ HN \\ 0 \\ R \\ R \end{array} $ $ \begin{array}{c} HN \\ 0 \\ R \\ R \end{array} $ $ \begin{array}{c} HN \\ R \\ R \end{array} $ $ \begin{array}{c} HN \\ R \\ R \end{array} $ $ \begin{array}{c} (21) \\ R \\ R \end{array} $	1184
	TMSO N	HgO, HgBr ₂ , C ₆ H ₆ , 100°, 7 n	$HN \xrightarrow{N}_{R} (84) \qquad R = \underbrace{O}_{BzO OBz}$	1143
	TMSO N N N N N N N N N TMSO TMS	Hg(CN) ₂ , PhMe, reflux, 2-3 h	$N \rightarrow NH \\ NH \\ R \qquad O $ $(39) + N^{3}\text{-isomer (4)}$	507
BzO BzO BzO		Cl(CH ₂) ₂ Cl or MeCN	$ \begin{array}{c} BzO \\ BzO \\ N \\ NII \end{array} $ ()	363
BnO BnO	OTMS N TMSO N	NBS, CH ₂ Cl ₂ , rt, 20 min	\dot{O} O NH O NH O O O O O O O O	1185
BzO BzO OBz		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	$R = \frac{BzO}{BzO} OBz$	511
	Mes NNN TMS	MeCN, n, 4 d	$\begin{pmatrix} & & \\ & N \\ & N \\ & & \\ & $	701
	CO ₂ Me CN I TMS	MeCN, rt, 3 d	$(48) + N^3 \text{-isomer (6)}$	704, 707
	N N IMS	MeCN, rt, 4 d	$N \rightarrow N$ (54) $N \sim N$ R	258

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	NH (76) NH (76) R	511
	MeO N TMS	1. MeCN, п, 2.5 d 2. NH ₃ , MeOH		1186
		MeCN	R^{1} $R = $ $R = $ $R_{ZO} OBz$	
	X R ¹ CH NO2 CH CO2Me N H	rt, 2 d rt, 3 d reflux, 5 h	Ř (46) (76) (27)	1186 1186 1187
		HgBr ₂ , rt		1142
		McCN, rt, 3 d	$ \begin{array}{c} $	89
	TMSO N	1. McCN, rt, 3 d 2. NH3, McOH	R = HO O H	89
	TMSO	1. МсСN, п, 3 d 2. NH ₃ , MeOH, п, 12 h		89
		HgBr ₂	$\begin{array}{c} O \\ H \\ N \\ N \\ N \\ N \\ N \\ N \\ O \\ H \\ O \\ H \\ O \\ H \\ O \\ H \\ O \\ O$	1142
	TMS ^{-N} ^N TMS	HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	NH (46)	511
		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	NH (60)	511
		HgO, HgBr ₂ , C ₆ H ₆ , reflux, 18 h	(42) NH R 0	511
	TMSO N	MeCN, rt, 18 h	N = 0 $N = 0$ $N = 0$ $K = 0$ $K = 0$	362

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar Ba	se	Conditions	Product(s) and Yield(s) (%)	Refs.
BZ_N_TMS			NHBz	
		$HgBr_2, C_6H_6,$	$N \rightarrow N$ (40) + N^7 -isomer (30)	1142
Ň		п, 3 h	N N	
			R	
OTMS	2		0	
	-N			001
	>	DMP, n, 3 d	$(46) + \alpha$ -anomer (19)	901
TMSO	-5		S N ~O	
N N				
		HgO, HgBr ₂ , C ₆ H ₆ ,		903
N ⁻ O	TMS	Ichux, e n	O N	
N	nl			
N	Y K	HgO, HgBr ₂ , C ₆ H ₆ ,		1144
R ² N N	OTMS	reflux	$O \sim N \sim R^2$	
$\frac{\mathbf{R}^1}{\mathbf{R}^2}$	R ²		Ŕ	
H	H Me-N	5h Sh	(41)	
Me	Me ₂ N	3 h	(77)	
OTMS				
N		Han HaBr. C.H.	$\begin{bmatrix} B_{2O} \\ B_{-} \end{bmatrix} = \begin{bmatrix} B_{2O$	1188
		reflux, 4 h		1100
'N 'N			O I I BzO OBz	
QTMS	5		Q	
N	N	HOO HOBra Calla	HN (50) + his(riboside) (3)	905
		reflux, 4 h		
IMSO N	IN		ONN I R	
R!			R ^j BzO ~~~~	
N N	۱	HgO, HgBr ₂ , C ₆ H ₆ ,	N $R =$	1144
R ² N		-	$\Lambda = \Lambda = \Lambda = \Lambda$	
	01110		R	
$\frac{R^{1}}{R^{1}}$	R ²	a 101	$\frac{\mathbf{R}^3}{\mathbf{N}^4}$	
мме ₂ Н	NHIMS NMe2	80°. 5 h	NH_2 (30) NMe_2 (49)	
OTMS	-		0	
	N R ²			104
Î I				104
TMSO ² N ²	$\mathbf{N}^{\prime} \mathbf{R}^{\prime}$		O'N N R'	
<u>-к</u> Н	Ph	HgO, HgBr ₂ , C ₆ H ₆ , 80°, 4 h	(6) + N^1 , N^3 -bis(riboside) (22)	104
н	Ph	CH ₂ Cl ₂ , 20°, 3 d	(19) + α -anomer (17)	104
Ph	н	HgO, HgBr ₂ , C ₆ H ₆ , 80°, 4 h	$(47) + N^1 N^3 - bis(riboside) (12)$	104
Ph u	н љ-СіС-н.	$CH_2Cl_2, 20^\circ, 3 d$ $CH_2Cl_2, 20^\circ, 5 d$	$(52) + \alpha$ -anomer (9) (21)	104 104
n p-CIC4H4	<i>р</i> -сле _б н ₄ Н	CH ₂ Cl ₂ , 20°, 4 d	(46)	104
Me	Me	HgO, HgBr ₂ , C ₆ H ₆ , 80°, 4 h	(44) + bis(riboside) (3)	905
Ph	Ph	HgO, HgBr ₂ , C ₆ H ₆ , 80°, 4 h	(74) + N^3 - β -isomer (5) + N^1 , N^3 -bis(riboside) (5)	104,
	<u>»-СІС.</u> 4.	CHaCla 20° 4 4	$(51) + \alpha_{-2}$ (51)	905 104
p-CiC6 n 4	p=C1C6114	€12€12, 20 , + u		104

TABLE VIII, REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		NBS, CH ₂ Cl ₂ , MS, rt, 30 min	$ \begin{array}{c} C_{0}H_{4}Mc \cdot p & NHBz \\ O & O & N & N \\ O & AcO & N & N \end{array} $ (58)	403
BzO BzO OBz		MeCN, п, 3 d	$\begin{array}{c} O \\ HN \\ HN \\ R \\ R \end{array} $ (84) $ R = \begin{array}{c} BzO \\ O \\ BzO \\ O \\ BzO \\ O \\$	~~ 258 3z
		MeCN, 110°, 15 min	$Me^{-N} \xrightarrow[R]{NH} (77)$	258
	Me OTMS	McCN, rt, 3 d	(46)	258
		SnCl4, McCN, 20°, 6 h	$ \begin{pmatrix} Ac \\ N \\ N \\ R \end{pmatrix} $ (51)	777
		KI, 18-crown-6, McCN:PhMe (1:1), reflux, 2-4 h	$B_{ZO} \xrightarrow{O} N \xrightarrow{N} N (61) \alpha:\beta = 24:76$ $H_{2N} \xrightarrow{N} -NII$	396
		MeCN, п, 48 h	$MeO \qquad \qquad$	1178
		KJ, 18-crown-6, MeCN:PhMe (1:1), reflux, 2-4 h	$BzO \longrightarrow O N N N O CONSTRAINT (70) \alpha:\beta = 32:68$	396
BzO-COBz OAc OBz	TMSO N	KI, dibenzo-18-crown-6, McCN, C ₆ H ₆ , reflux, 3 d	$ \begin{array}{c} $	n 1166 Iz
	NHTMS TMSO N	KI, dibenzo-18-crown-6, MeCN, C ₆ H ₆ , reflux, 5 d	NH ₂ N N N O N (87)	1166

TABLE VIII. REACTIONS OF SILVLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Con	tinued)

TABLE VIII, REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILVLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE VIII. REACTIONS OF SILYLATED BASES WITH PROTECTED SUGARS WITH OR WITHOUT CATALYSTS (Continued)

TABLE IX. FUSION REACTIONS

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	O N H	125°, 90 min	$AcO \qquad \qquad$	55
		120°, 45 min	Aco (24) $\alpha:\beta = 1:1$	55
	O N H	120°, 90 min	Aco (42) $\alpha:\beta = 1:i$	55
	R^{1} N R^{2} R^{2} R^{1} N R^{2} R^{2}			55
	$ \begin{array}{ccc} R^1 & R^2 \\ H & H \\ Cl & H \\ Cl & Cl \end{array} $	118°, 30 min 120°, 20 min 120°, 20 min	R^{1} (83) $\alpha:\beta = 1:1$ (64) $\alpha:\beta = 1:1$ (72)	
MeO ₂ C AcO OAc	OTMS N TMSO N	110°, 18 h	$MeO_2C \longrightarrow NH \\ AcO OAc $ (34) $\alpha:\beta = 1:3$	224
AcO OAc	$\overbrace{\overset{N}{\overset{N}{}}}_{H} NO_{2}$	TsOH, 130-140°, 15 min	$ \begin{array}{c} N \\ N \\ N \\ N \\ R \\ R \end{array} $ $ \begin{array}{c} AcO \\ N \\ AcO \\ AcO \\ AcO \\ \end{array} $	1193
	HN-NO2	TsOH, 130-140°, 15 min	$ \begin{matrix} N \\ M \\ N \\ N \\ R \end{matrix} $ (83)	1193
		1. 180-190° 2. NaOMe, MeOH	$R^{1} \underbrace{\bigvee_{i=1}^{O}}_{R} \frac{R^{1}}{H} (35) = R = \underbrace{HO}_{HO} \underbrace{O}_{OH}$	75
		180-190°	N = AcO O	75
Aco OAc		110°, 30 min	$CI \longrightarrow N (69)$	1194
	N N TMS	110°, 45 min	$s = \begin{pmatrix} N \\ N \\ R \end{pmatrix}$ (34)	1194

Buse	Conditions	Product(s) and field(s) (%)	Rets.
TMS	KI, 130°, 1 h	$ \begin{array}{c} BzO \\ BzO \\ BzO \\ OBz \end{array} $ (90)	1228
M TMS	KI, 130°, 1 h	$B_{zO} \xrightarrow{N} (41) + \alpha \text{-anomer (16)}$	1228
	190°, 40 min	$BzO OBz$ $BzO BzO NH OH H (-) \alpha:\beta = 7:2$ $BzO R^{1}$	1195
	100°, 20 h	BnO O BnO O O O O O O O O O	356
H ₂ N EtO ₂ C H	110°, 1 min	BnÓ BnO - O - O - O - O - O - O - O - O - O -	352
	105°, 2 d	$ \begin{array}{c} BnO \\ R^{1}O \\ R^{1}O \\ R^{1}O \\ N \\ N \\ Br \\ O \end{array} $ (43)	1229
		$\begin{array}{c} R^{1} \\ R^{1}O \\ R^{1}O$	1230 1230
	120°.6 h	$ \begin{array}{c} $	1192
OTMS	125°, 18 h		1192
	(+) + (+)	$ \begin{array}{c} \left(\right) \right) \\ TMS \end{array}\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array}\right) \\ \left(\begin{array}{c} TMS \end{array} \right) $	$ \begin{array}{c} \left(\right) \right) \right) \\ H_{X} \right) \\ T_{MS} \end{array} \right) \\ T_{MS} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ H_{X} \right) \\ T_{MS} \end{array} \right) \\ T_{MS} \end{array} \right) \\ T_{MS} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ H_{X} \right) \\ T_{MS} \end{array} \right) \\ T_{MS} \end{array} \right) \\ T_{MS} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ H_{X} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ H_{X} \end{array} \right) \\ \left(\left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left(\left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\left(\end{array} \right) \\ \left(\begin{array}{c} \left(\end{array} \right) \\ \left$

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH	I PROTECTED SUGARS (Continued)
---	--------------------------------

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs
	Br N N Br N H	Cl(CH ₂) ₂ Cl, MS, 100°, 32 h	$ \begin{array}{c} & Br \\ & N \\ & N \\ & N \\ & N \\ & R \end{array} $ (32)	539
		1. Xylene, reflux, 12 h 2. thiouracil	$N \rightarrow NH (10)$	384
		Xylene, reflux, 15 h	(17)	384, 1246
Aco Aco OAc	N N HgCl	1. Xylene, reflux, 1.5-2 h 2. NH ₃ , MeOH	(34) $R = OH$ HO HO HO HO OH HO HO) H
	R^{1} N H H	Hg(CN) ₂ , MeNO ₂ , reflux, 2.5 h	$\bigwedge_{R}^{Cl} \underbrace{R^{i}}_{OAc} AcO \xrightarrow{O}_{OAc} AcO \xrightarrow{O}$	1247
		Hg(CN) ₂ , MeNO ₂ , reflux, 2 h	$CI \longrightarrow N \longrightarrow CI $ $R \longrightarrow CI$ $R \longrightarrow CI$	1247
Aco Aco OAc OAc		Hg(CN) ₂ , MeNO ₂ , reflux, 3 h	$CI \longrightarrow N \longrightarrow N $ $CI \longrightarrow N \longrightarrow N \longrightarrow N $ $CI \longrightarrow N \longrightarrow N \longrightarrow N $ $CI \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N $ $CI \longrightarrow N \longrightarrow $	1247
Aco OAc OBr		PhMe, reflux, 2 h		1248
		Hg(CN) ₂ , MeNO ₂ , MS, reflux, 3-4 h	$ \begin{array}{cccc} R^{1} & R^{1} & \\ & & \\ N & \\ N & \\ R & \\ \end{array} & CONH_{2} & (46) \\ & & \\ CO_{2}Et & (36) + N^{3}-isomer(12) \end{array} $	1240
	O NO2 O NO2 Ag	PhMe, reflux, 20 min	O ₂ N N R (-5)	58
	NH ₂ N N H	Hg(CN)2, MeNO2, MS, reflux, 1 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1249
	NHAc	Hg(CN) ₂ , HgBr ₂ , MeNO ₂ , PhMe, reflux, 20 min	$NHAc$ $NHAc$ $R^{1} = H, (55)$	1249

ROCYCLIC BASES WITH PROTECTED SUGARS (Continued) TABLE X. MIS AND AND A DE LO

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		HgBr ₂ , PhMe, reflux	$\mathbf{R}^{1} = \mathbf{A}\mathbf{g}, (55)$	57
		Hg(CN) ₂ , MeNO ₂ , reflux, 4 h	(94)	1249
	O N N Hgl	1. PhMc, reflux, 4 h 2. KI	N N R (7)	60
		PhMe, McCN, reflux, 4 h	Mc N C C C C C C C C C C C C C C C C C C	60
	N H	Hg(CN) ₂ , MeNO ₂ , reflux, 4 h	(63)	1247
		Hg(CN) ₂ , MeNO ₂ , reflux, 3 h	NHBz = NHBz = N	1247
	NHBn N N N N H	DMF, 100°, 20 h	NHBn N (30) + N^{β} -isomer (—) R	1250
		Xylene, reflux, 2 h	(86)	1251
	NHBz N N Bn	Xylene, reflux, 1.5 h	$ \begin{array}{c} Bn \\ N \\ N \\ N \\ N \\ R \\ NBz \end{array} $ (28)	1251
		Xylene, reflux	$CI \xrightarrow{N}_{N} \xrightarrow{R^{1}}_{N} \xrightarrow{R^{1}}_{CI} \xrightarrow{-} (-)$ $H_{N} \xrightarrow{N}_{N} \xrightarrow{CI}_{N} \xrightarrow{NH_{2}} 6 h (29)$	56
	Mc N N R ¹ O N N Ag	Xylene, reflux	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56
	Ag N N O N O N Ma	PhMe, reflux, 30 min	$Me \xrightarrow{N} Me (23)$	56
	те		~	

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)
Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	OMe N O N Haci	MeCN, reflux, 25 min	OMe (26) + bis(riboside) (13) $+ N^{3}$ -isomer (19)	60
		McCN, reflux, 8 h	$R = \frac{BzO}{BzO} OBz$	254
		1. HgBr ₂ , C ₆ H ₆ , reflux, 2 h 2. 25°, 16 h	$\frac{HN}{S} \xrightarrow{N} O$ (13) + S isomer (18)	1269
	NHAc S NHAC HgCl	1. HgBr ₂ , C ₆ H ₆ , reflux, 2 h 2. 25°, 16 h	$ \begin{array}{c} NHAc \\ N \\ N \\ N \\ N \\ R \\ R \end{array} $ ()	1269
	N N N N N N N N N N N N N N N N N N N	MeCN, MS, 100°, 4 h	$NC \xrightarrow{O}_{NH} (41)$	1260
		PhMe, reflux, 12 h		1248
		C_6H_6 , reflux, i h		1248
	R^2 N R^3 R^3	MeCN, reflux, time	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 60)) + riboside)
			(13))

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	R^2 N R^1 N R^1 $H_{g/2}$	MeCN, reflux	$R^{2} \xrightarrow{N} R^{1} = \frac{R^{1}}{H} \frac{R^{2}}{Me} + \frac{R^{2}}{2h} $ $Me = \frac{1}{2h} \frac{1}{69}$ $R^{1} = \frac{1}{2h} \frac{1}{69}$ $R^{1} = \frac{1}{2h} \frac{1}{69}$ $R^{2} = \frac{1}{2h} \frac{1}{69}$	60
	H OHC ^N F H	Hg(CN)2, M&NO2, MS, reflux, 4-8 h	$\bigvee_{\substack{N \\ I \\ R \\ R \\ H}} F (38) + N^{1} \text{-isomer (36)}$	1270
		Hg(OAc) ₂ , HgBr ₂ , PhMe, reflux, 22 h	$ \begin{array}{c} N \\ N \\ N \\ R \\ R \\ H \\ H \\ H \\ H \\ H \\ H \\ BzO \\ OBz \\ \end{array} $	1206
BzOBzO OBz		Hg(CN) ₂ , McCN, 60°, 2.5 h	$ \begin{matrix} N \\ N \\ N \\ R \end{matrix} $ (68)	213
	MeO N R1	1. McCN, rt, 3 d 2. NH ₃ , MeOH	$R^{1} \xrightarrow{N}_{O} O \xrightarrow{R^{1}_{O}} O \xrightarrow{R = 0} O \xrightarrow{NHCbz} (52)$	1186
	McO N CONH ₂	DMF, rt, 3 d	$H_2NOC (63) R = BzO OBz$	1186
	MeO NHAC	MeCN, MS, rt, 4 d	F NHAc N N O R (38)	1226
	N N H	Dioxane, reflux, 2.5 h	$ \begin{array}{c} BzO \\ BzO \\ BzO \\ N \\ N$	50
	AcNH N H	Hg(CN) ₂ , MS, reflux, 3 h	$ \begin{array}{c} N \\ N \\ N \\ R \end{array} $ $ \begin{array}{c} N \\ N \\ N \\ R \end{array} $ $ \begin{array}{c} (72) + R = \\ C \\ C$	~~ 889 z
	NHBz N N N N N N H	Hg(CN) ₂ , McCN, MS, 50°, 7.5 h	$ \begin{array}{c} HN \\ HN \\ K \\ NBz \\ R \end{array} $ (50)	1271
		McCN	$\mathbb{N}^{\mathbb{N}^{1}}_{\mathbb{N}^{\mathbb{N}^{2}}} \mathbb{N}^{\mathbb{N}^{2}}_{\mathbb{N}^{9}}$	
	κ' NH2 NMe2	50°, 36 h 50° 60-65°, 18 h	R (25) (21) (46) + N^{9} -anomer (11)	1243 1272 61

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		DMA, 60-65°, 40 h	N = R = R = R = R = R = R = R = R = R =	~ 61 2
	Me ₂ N N N O	Hg(CN) ₂ , MeNO ₂ , MS, 101°, 30 min	$ \begin{array}{c} $	1112
		EtNO ₂ , MS, 114°, 30 min	I (75)	1112
BzO BzO OBz	NHBz N N H	Hg(CN)2, McNO2, reflux, 6 h	$R = \begin{bmatrix} BzO \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	516
	S HN S Hg/2	Xylene, reflux, 1 h	$ \begin{array}{c} 0 \\ NH \\ N^{1}, N^{3} \text{-isomer}(-) + \\ N^{1}, N^{3} \text{-bis(isomer)}(-) \\ R \end{array} $	1273
	$ \begin{array}{c} 0 \\ HN \\ 0 \\ R^{1} \\ H \\ F \\ CN \\ NO_{2} \\ Me \end{array} $	Hg(CN)2, MeNO2, reflux, 6 h	$ \begin{array}{c} $	516
	CO ₂ Et SMe MeS N N HgCl	PhMe, 140°, 4 h	(30) SMe N N N SMe (60) + α -anomer (5) R	1094
		Hg(CN) ₂ , MeNO ₂ , MS, reflux, 6-8 h	$(26) + N^{3} \text{-isomer (19)}$	1270
		Hg(CN) ₂ , McNO ₂ , MS, reflux, 4-8 h	$\bigvee_{\substack{l \\ R \\ R \\ Cl}}^{N} \bigvee_{\substack{l \\ R \\ Cl}}^{V} (22) + N^3 \text{ isomer } (18)$	1270
	R ¹ NH F	Hg(CN) ₂ , MeNO ₂ , MS, reflux, 4-8 h	$ \begin{array}{c} N \\ N^{-1} \\ R \\ $	1270

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		1. CH ₂ Cl ₂ , MS, π, 3 d 2. H ₂ , PdCl ₂ , MeOH, 15 min	HO O HO H	1274
		PhMe, reflux, 30 min	HO HO NHAc $N \to R = BnO \to O$ BnO BnO BnO	356
	NHBz N N N N H	CH ₂ Cl ₂ , MS, rt, 1 week	$\begin{pmatrix} N \\ N \\ N \\ N \\ R \end{pmatrix} = \begin{pmatrix} 166 \\ 166 \end{pmatrix}$	341
	ACNH NHAC N N N N N N N N N N N N N N N N N N N	1. Cl(CH ₂) ₂ Cl, MS, reflux 2. MeNH ₂ , EtOH, 55-60°, 18-42 h	$ \begin{array}{c} \mathbf{N} \\ \mathbf$	345
		 CH₂Cl₂, MS, rt, 1 week NH₃, MeOH. 0° 	$ \begin{array}{c} \mathbf{N} \\ \mathbf{C} \\ \mathbf{I} (28) \end{array} $	342
	н	Hg(CN) ₂ , MeNO ₂ , reflux, 3 h	R I (11) + α-anomer (25)	343
		1. CH ₂ Cl ₂ , n, 5 d 2. H ₂ , PdCl ₂	(49) $R = HO$ HO HO HO HO	357
	MeO NH N N N N N N N N N N N N N N N N N N	Cl(CH ₂) ₂ Cl, reflux, 10 h	$ \begin{array}{c} $	347
		i. Cl(CH ₂) ₂ Cl, reflux, 5 d 2. NaOMe, MeOH	$HO \longrightarrow O HO HO NH_2 (40)$	344
		IDCP, McCN, MS, π, 2 h	Toto N N N $N^{2}(\alpha,\beta)$ -isomer (17) N N $N^{2}(\alpha,\beta)$ -isomer (39)	421
BzO OBz		MeNO ₂ , п, 48 h	TolO NHBz N N N N N N (49)	632

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE X. MISCELLANEOUS REACTIONS OF HETEROCYCLIC BASES WITH PROTECTED SUGARS (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		NaH, MeCN, rt, 2 h	AcO O O O O O O O O O O O O O O O O O O	1284
	$\mathbb{N} \xrightarrow{\mathbf{N}^{1}}_{\mathbf{N}} \mathbb{N}$	NaH, DMF, 78°	$\begin{array}{c c} & & & & \\ & &$	1285
	Ph_N_S O_N_H	NaH, DMF, rt, 12 h	TMS N N O (88)	894
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NaH, DMF, п, 12 h	$ \begin{array}{c} $	894
	Mc H H Me Et H Ph Ph H Me Me Me O		(17) (19) (57) (43) O	
	Me N N N N N N N N N N N N N N N N N N N	NaH, DMF, rt, 12 h	$TMS \xrightarrow{S O } O $ (50)	894
	$ \begin{array}{c} 0 \\ R^{1} \\ 0 \\ \hline R^{1} \\ H \\ \hline R^{2} \\ \hline He \\ H \end{array} $	NaH, DMF, π, 12 h	$ \begin{array}{c} $	894
	Ph Me p-ClCeH ₄ H Me N N S H	NaH, DMF, п, 12 h	(63) (54) (54) $TMS \longrightarrow S \longrightarrow N \longrightarrow O$ (66)	894
	Ph N N-Me	NaH, DMF, rt, 12 h	Me - N N N O (52) $TMS N O O O O O O O O O O O O O O O O O O$	894
		NaH, DMF, rt, 12 h	$\begin{array}{c} R^{1} \\ R^{1} \\ TMS \\ O \\ $	894
		NaH, DMF, rt, 12 h	$TMS \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{N} \xrightarrow{S} (25)$	894
		NaH, DMF, rt, 12 h	$TMS \xrightarrow{O} O O \xrightarrow{O} O O O \bigcirc O O O O O O O O O O O O O O O$	894

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WI	TH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		1. КОН, TDA-1, MeCN. rt 2. Bu4NF, THF	$R = \frac{HO}{R}$	1287
	H_2N N H H	КОН, TDA-1, McCN, п, 10 min	$ \begin{array}{c} Cl \\ N \\ R \\ R \end{array} $ (22) + α -anomer (20)	1288
		KOH, TDA-1, MeCN, rt, 10 min	C1 N N N N N N N N N N N A-anomer (26) + N N N N N N N N N N N N N	1289
		K₂CO3, TDA-1, MeCN	$(46) + \alpha \text{-anomer } (35)$	1290, 1291
		KOH, TDA-1, MeCN	N (22) + α -anomer (18) + N (22) + α -anomer (18) + N N^8 - β -isomer (9) + N^8 - α -isomer (9) R OMe	1292
		KOH, TDA-1, MeCN		1291
Cu	$H_2N \xrightarrow{N} H_1$	KOH, TDA-1, McCN	OMe N N N (14) + N^3 -isomer (12) N N N N N N N N N N N N N N N N N N N	1293
		K ₂ CO ₃ , TDA-1, MeCN, п, 50 min	$BzO \longrightarrow N \longrightarrow N CI \qquad (45) + (43)$	1290
HO		1. NaH, DMF, 80°, 2 h 2. Me ₂ S(SMe)BF ₄ , CH ₂ Cl ₂ , MS, rt or - 20°, 4 h 3. OH ⁻		97
AcO AcO OAc	NHBz N N N HgCl	CdCO3, xylene, reflux, 24 h	NHBz = AcO - OAc	1071
AcO AcO OAc OAc	HN O N COSC ₈ H ₁₇	(<i>i-</i> Pr) ₂ NEt, DMF, rt, 12 h	$ \begin{array}{c} F \\ O \\ N \\ R \end{array} $ $ \begin{array}{c} COSC_8H_{17} \\ (75) \\ R \end{array} $	1294
	$\begin{array}{c} Ph \\ N \\ N \\ H \\ \end{array} \begin{array}{c} R^{1} \\ S \\ H \\ S \\ H \end{array}$	КОН, Ме ₂ СО, Н ₂ О, п, 12 h	$\begin{array}{c c} Ph & R^{1} & R^{1} \\ N & R^{1} & Bn \\ R & CH_{2}C_{6}H_{4}OMe-p \\ R & CH_{2}C_{6}H_{4}Cl-p \end{array} $ (64)	1295

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	p-MeOC ₆ H ₄ O N N R^1 R' Ph p-MeOC ₆ H ₄	КОН, Me ₂ CO, H ₂ O, rt, 12 h	$p-MeOC_6H_4 \qquad O \qquad AcO \qquad OAc$ $R = AcO \qquad OAc$ $R = AcO \qquad OAc$ $R = (82)$ (57) (78)	1295
AcO AcO Br OAc	Ph. N-Me ON N-Me	NaH, DMF, rt, 12 h	$ \begin{array}{c} $	894
	$ \begin{cases} \frac{\Lambda}{N} & R^{\dagger} \\ R & H \end{cases} $	NaH, McCN, rt	TBDMSO R^{1} R^{1} R^{1} R^{1} R^{1} (61) R^{1} R^{1}	68 1296,
	H_2N H_2N H_2N H_2N H_2N H_2N H H H	K ₂ CO ₃ , NMP, 80°, 3 h	TBDMSO O O O O O O N N I (23) $\alpha:\beta = 2.5:1$ O O O O O O O O	1297
		Cs ₂ CO ₃ , NMP, 55°, 3 h	H_2N I (25-38) $\alpha:\beta = 7.7:1$	1298
	H_2N N H H H	NaH, MeCN, 11, 12 h	$NC \qquad Cl \qquad TBDMSO \qquad O \qquad$	1299
		KOH, TDA-1, MeCN, π, 10 min	$ \begin{array}{c} CI \\ N \\ N \\ R \end{array} $ $I (65)$	1300
		NaH, MeCN, rt, 30 min	I (67)	1297
		КОН, TDA-1, MeCN, rt, 20 h	$ \begin{array}{c} Cl \\ N \\ N \\ R \\ R$	
	R^{1} R^{2} R^{2	КОН, TDA-1, MeCN, rt, 20 h	$\begin{array}{c} \underline{\text{Base:Sugar}} \\ \hline 1:1 & (34) \\ 2:1 & (65) \\ 1:1 & (53) \\ 2:1 & (78) \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	1301 1301 1301 1301 1301 1301 1301

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base Conditions	Product(s) and Yield(s) (%)	Refs.
	F (<i>i</i> -Pr) ₂ NEt, THF or DMF, rt, 12 h	$\begin{array}{c} TolO & O & F \\ \hline \\ TolO & O & OCSC_8H_{17}-n \end{array} $ (100)	256a
	NaH, MeCN	$R = \frac{TolO}{TolO}$	~
H NO ₂ CN CO ₂ Me	т, 12 h rt, 12 h rt, 12 h 0-25°	(75) (82) (79) (86)	1332 1332 1332 1333
	-CN NaH, MeCN, ri	NC R^1 R R^1 H 12 h (70) $30 \min$ (90)	1332 1297, 1332
	—R ¹ NaH, MeCN, rt, 12 h	$R^{1} \xrightarrow[]{} N \\ R^{1} \xrightarrow[]{} R \\ CONH_{2} (60)$	1332
	KOH, TDA-1, MeCN, rt, 20 min	$N_{R}^{1} = \frac{R^{1}}{H} (34) + N^{2}\text{-isomer (21)}$ $NO_{2} (34) + N^{2}\text{-isomer (34)}$ R	1334
	KOH, MeCN	$R = \frac{TolO}{TolO}$	ŕ
<u>R¹</u> Η ΝΟ ₂	rt, 15 min TDA-1, rt, 30 min 18-crown-6, rt, 30 min	(86) (45) + N^3 - β -isomer (30) + N^3 - α -isomer (6) (49) + N^3 - β -isomer (32) + N^3 - α -isomer (8)	1335 1336 1336
NO ₂ NO ₂	K ₂ CO ₃ , TDA-1, MeCN, rt, 2 h K ₂ CO ₃ , 18-crown-6,	(12) + α -anomer (26) (14) + α -anomer (27)	1336 1336
O ₂ N	MeCN, rt, 2 h N KOH, TDA-1, MeCN, N rt, 2 h H	$(39) + N^3 \text{-isomer (46)}$	1336
R^{1} R^{1} R^{1} Cl Cl Cl	R^2 NaH, MeCN, rt, 15 min H R^2 H H CF ₃	$ \begin{array}{c} \mathbf{R}^{2} \\ \mathbf{R}^{1} \\ R$	1335
$ \begin{array}{c} CI\\ CI\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ме Рт- <i>і</i> KOH, TDA-1, MeCN, rt, 20 min	(12) (49) (49) (12)	67, 1337

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
		KOH, TDA-1, MeCN, rt, 15 min	(90) $R = (100)$ $R = (100)$ $TolO$	1338
		KOH, TDA-1, MeCN, rt		
	<u>K'</u> Cl NHMe SMe	15 min 10 min 10 min	(81) (66) (80)	1339 1340 1340
		KOH, TDA-1, MeCN, rt, 15 min	(61)	1341
		NaH, MeCN, п, 12 h	$Cl \xrightarrow{\qquad V \\ N \\ R \\ R \\ R \\ Cl \xrightarrow{\qquad N \\ N \\ N \\ R \\ (63) + N^{1} \text{-isomer (19)}$	1342
	R^{1} N H H	NaH, MeCN, π, 2 h KOH, Bu4NHSO4, MeCN	$ \begin{array}{cccc} CI & R^{1} \\ N & N \\ N & R^{1} \\ R & NH_{2} \\ R & NH_{2} \\ (46) \end{array} $	1343 64 1344
		NaOH (50%), TEBA, CH ₂ Cl ₂ , CHCl ₃ , rt, 5 min	$(67) + \alpha \text{-anomer } (7)$	1345
		KOH, TDA-1, MeCN, rt, 5 min	(61)	1346, 262
	H_2N N H H	 KOII, Bu₄NHSO₄, CH₂Cl₂, π, 3 min NaOMe, MeOH, π, 3 h 	$HO \longrightarrow N \longrightarrow NH_2 (63)$	1339, 1186
	H ₂ N N H	NaOH, CH ₂ Cl ₂ , rt, 3 min	HO OBu-i N R R R = TolO TolO TolO TolO TolO	262
	H ₂ N H	KOH, TDA-1, MeCN, rt, 5 min	(73)	262
		 NaOH (50%), TEBA, CH₂Cl₂, CHCl₃, г, 30 min NaOMe, MeOH 	$\bigwedge_{\substack{N \\ R}}^{OMe} (67) \qquad R = \bigvee_{HO}^{HO} \bigvee_{HO}^{OMe} (67)$	1345

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	Mes N N H	1. NaH, MeCN, rt, 45 min 2. Rexyn™ 201, MeOH, rt, 1.5 h	$N = N = SMe^{(58)}$	1347
	$ \begin{array}{c} CI \\ R^{3} \\ R^{1} \\ R^{1} \\ R^{2} \\ H \\ $	NaH, MeCN, rt	$R^{2} \xrightarrow{N}_{R} N \xrightarrow{R^{1}}_{R} R^{1} \qquad R = \underbrace{TolO}_{TolO}$	~
	$\frac{R^{1}}{Me} = \frac{R^{2}}{\Omega} = \frac{R^{3}}{H}$	12 h	(59)	1342
	SMe Cl H	30 min	(87)	1342
	H Br CN	2 h	(53)	1348
	NH ₂ H CN	_	(75)	1349
	NH ₂ H CO ₂ Me	30 min	(87)	1297
	SMe Me H	30 min	(80)	1342
	H ₂ N N H	NaOH (50%), TEBA, CH ₂ Cl ₂ , rt, 5 min	$ \begin{array}{c} OMe \\ N \\ N \\ R \end{array} $ (47) + α -anomer (40)	1350
		NaH, MeCN, 50°, 2 h	$ \begin{array}{c} NC \\ NC \\ N \\ N \\ R \end{array} $ $ \begin{array}{c} SMe \\ (72) \\ SMe \\ R \end{array} $	1351
		NaOH (50%), ТЕВА, CH ₂ Cl ₂ , гі	$ \begin{array}{c} 0 \\ N \\ N \\ R \\ R \\ Me \end{array} $ $ \begin{array}{c} 0 \\ (50) + \\ (50) + \\ (50) + \\ (21) \\$	1352
	Me N N N N N N N N H Pr- <i>i</i>	KOH, TDA-1, MeCN, л, 15 min	$ \begin{array}{c} & & & \\ & &$	1352
		NaH, MeCN, π, 30 min	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ N & & & \\ & & & \\ R & & Cl \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	1297 1353
		NaH, MeCN, rt		
	H	2 h	(95)	1303
	CI	30 min	(63)	1297
	N ₃	2 h	(61)	1303
	OMe	2 h	(64)	1303
	OBn	2 h	(78)	1303
	QBn	A NUMBER OF	ŅН	
	N N H	1. NaH. MeCN 2. NH ₃ , MeOH 3. H ₂ , Pd/C		1354
			HÖ	

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	N N H	1. NaH, MeCN 2. NH3, McOH		1354
		KOH, TDA-1, MeCN, π	H \dot{O} N N R R R TolO TolO TolO	
	Cl SMe	1 h 15 min	(61) + N^3 -isomer (26) (68) + N^3 -isomer (29)	1355 1356
		NaH, McCN, rt, 30 min	(66)	1297, 64
		NaH, MeCN, 0°, 3 h	$ \begin{array}{c} NO_2 \\ N \\ N \\ N \\ R \end{array} $ $ \begin{array}{c} R^1 \\ R^1 \end{array} $ $ \begin{array}{c} R^1 \\ H \\ C1 \end{array} $ $ \begin{array}{c} (60) \\ (50) \\ R \end{array} $	1357
	N N H	KOH, TDA-1, McCN, rt, 15 min	$N = 1 $ (57) + N^2 -isomer (30)	271
		NaH, MeCN, rt, 20 min		
	<u>R'</u> NH ₂ NO ₂		(19) + N^2 -isomer (20) + N^3 -isomer (8) (8) + N^2 - + N^3 -isomer (56)	271
	R^1 N	NaH, MeCN, rt	$N_{R}^{\prime} = R^{1}$	271
	Cl Me	20 min 10 min	(36) + N^2 -isomer (24) (45) + N^2 -isomer (25)	
		NaOH (50%), THF, rt, 3 min	(42) (2) $h^2 R^2 = m r^2 (21)$	1358
	Омс SMe	KOH, 18-crown-6, giyme, 20°, 10 min KOH, TDA-1, MeCN, rt, 15 min	(65) + N^{1} - α -isomer 95) + N^{2} -isomer (9)	1326

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	Cl			
	N		N N	
	Rt Cl	NaOH (50%), CH ₂ Cl ₂ ,	(36)	1359
	NH ₂	KOH, (30%), THF, CH ₂ Cl ₂	$(39) + N^2$ -isomer (39)	1360
	ОМс		OMe	
	N		N	
	$\frac{\mathbf{R}^{1}}{\mathbf{R}^{2}}$		Ŕ	
	Cl	NaOH (50%), CH ₂ Cl ₂ , Bu ₄ NHSO ₄	(48)	1359
	NH ₂	KOH (30%), THF, CH ₂ Cl ₂ ,	$(47) + N^2$ -isomer (13)	1360
	NHA	rt, 2 min KOH (50%) BuaNHSOa	$(37) + \alpha$ -isomer (6) + N^2 - β -isomer (15)	1360
		CH_2Cl_2 , rt, 2 min		
	ОМе	NaOH (50%), CH ₂ Cl ₂ , Bu ₄ NHSO ₄	(40)	1359
	\mathbf{R}^{1}		R^{1} R^{1}	
	N N	NaH, MeCN, rt, Me-CO	^N N Cl 30 min (61) + N^7 -isomer (13) Br 1 h (45) + N^7 - β -isomer (13)	1297 1361
	N N H	ine ₂ ee	N N N N N N N N N N N N N N N N N N N	
	Br		Br	
	N N	NaH, MeCN, rt, 15 min	$(50) + \alpha \text{-anomer}(11)$	1361, 1362
	Br N H		N Br R	1502
	N		R =	
	<u>R¹</u>		N (11)	1207
	Cl NH2	NaH, MeCN, rt, 30 min NaH, MeCN, rt, 30 min	(59) + N'-isomer (11) (55) + N^7 -isomer (9)	1297
	NHPh	NaH, MeCN, rt, 1 h	$(43) + N^7$ -isomer (10)	1363
	NHC ₆ H₄Bu-p	NaH, MeCN, n, 1 h	(64) + N'-isomer (14)	1304
	SMe		N R^1 $N^2 - \beta$ $N^2 - \alpha$ $N^2 - \alpha$	1261
		NaH, MeCN, rt, 1 h	N SMe (62) (19) (0.3) (0.2)	1365
	\mathbf{R}^{1} \mathbf{N} \mathbf{H}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1361
		MeCN/THF (5:1),	$(18) + \alpha \text{-anomer} (52)$	1168
	N Na		N N R	
	NH ₂		NH2	
	NNN	Me ₂ CO, rt, 19 h		65,
	NN		N N N	1366
	Na		ĸ	

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
Ph ₃ CO V N ₃	NH2 N N N H	K ₂ CO ₃ , 18-crown-6, DMF, 100°	Ph ₃ CO O N N (55) $\alpha:\beta = 1:2$ N ₃ N NH_2	1372
	CN N H CO ₂ Et	NaH, MeCN, 70°, 17 h	(96) $R = $ $BzO OBz$ $BzO OBz$	1373, 1374
BzO BzO BzO OBz	MeO	Na2CO3. CH2Cl2. MeCN, n, 24 h		867
	N H	NaH, dioxane, rt, 30 min, 50°, 1 h	$\begin{array}{c} BzO \\ BzO \\ BzO \\ Ph \end{array} \xrightarrow{O} \begin{array}{c} R^{1} \\ 2-CN \\ 3-CN \\ (85) \end{array}$	68 1297
		NaH, MeCN, 50°, 4 h	$\begin{array}{c} BzO \\ \hline \\ BzO \\ \hline \\ BzO \\ \hline \\ BzO \\ \hline \\ OBz \\ \hline \\ OEt \\ \hline \\ OEt \\ \hline \\ OEt \\ \hline \\ N^1 \text{ and } N^3 \text{ isomers} \\ \hline \\ \end{array}$	1323
	$MC \rightarrow N$ $MeO_2C \rightarrow N$ H H	NaH, McCN, rt, 4 h	$R^{1} \xrightarrow{N} CO_{2}Me SMe (72)$ $R = BzO OBz$	1324
	EtO ₂ C N SH	NaH, MeCN, rt, 3 h	$S = \begin{bmatrix} CO_2 Et \\ S \\ S \\ R \end{bmatrix} $ (38) $R = \begin{bmatrix} BzO \\ O \\ BzO \\ OBz \end{bmatrix} $	1375
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(<i>i</i> -Pr)₂NEt, DMF, rt, 12 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1294
	$R^{I} \qquad NH \\ N \qquad O \\ SC_{8}H_{17}-n$	(<i>i</i> -Pr) ₂ NEt, DMF, rt, 12 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1294
	NO_2 N H	NaH, McCN, rt, 3 h	$BzO \longrightarrow O O O Ph (31)$	1376
		NaH, MeCN, rt, 3 h	$ \begin{array}{c} Cl \\ BzO \\ BzO \\ BzO \\ Ph \end{array} $ (61)	1377
	McS N H	NaOH (X%), CH ₂ Cl ₂ , Вщ _і NHSO ₄	$\bigwedge_{\substack{N \\ R}}^{\text{OMe}} \frac{X}{10} \frac{\alpha \text{-anomer}}{(25)} \frac{10}{(10)} \frac{10}{50} \frac{10}{(25)} \frac{10}{(66)}$	1378 1378

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continu	ued)
--	------

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	$ \begin{array}{c} Cl \\ N \\ N \\ H \end{array} $ N 2 H	NaH, MeCN, п, 24 h	$(30) + N^2 \cdot \beta \cdot \text{isomer} (26) + N^1 \cdot \beta \cdot \text{isomer} (21)$	1370
BnO O BnO Br	MeS N H	NaOH (50%), TEBA, CH ₂ Cl ₂ , rt, 15 min	$N = \frac{0}{\frac{1}{R}} \frac{1}{\frac{1}{R}} \frac{1}{\frac{1}{$	66
BzO BzO BzO		NaH, MeCN, п, 15 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1092
BnO OBn	H CN CO_2Et H	NaH, DMF, rt, 21 h	$R^{CN} = R^{CO_2Et} $	а 1373 п
	NO_2 N H	NaH, MeCN, rt, 6 h	$(42) + \alpha \text{-anomer (44)}$	1376
BnO OBn	Mes N H	NaOH (50%), ТЕВА, CH2Cl2, п, 3 h	$ \begin{array}{c} OMe \\ N \\ N \\ R \end{array} $ $(25) + \alpha \text{-anomer } (45)$ $R \\ R $	1379
BnO BnO BnO	NC NC H	NaH, MeCN, п, 12 h	$R^{1} \qquad R^{1} \qquad R^{1} \qquad R = 0$	68, 1315
	EtO ₂ C NC H	NaH, McCN, π, 2 h	$ \begin{array}{c} CO_2Et \\ N \\ R \\ R \end{array} $ (82)	1317
	EtO ₂ C N H	NaH, MeCN, rı	EtO_2C V R (69)	1316
	R^1 NC CN Br H	1. (CH ₃) ₂ NCH(OEt) ₂ 2. NaH, MeCN, гt	$\begin{array}{c cccc} NC & \frac{R^{1}}{NH_{2}} & 30 \min & () \\ Br & R^{1} & R \\ & R \\ & R \end{array}$	1297 1316, 1380
	H ₂ NOC H ₂ N H	Et ₃ N, MeCN, 100°, 1.25 h	CONH ₂ (40) NH ₂ R	352
	K N N H	NaH, DMF, rt, 2 h	$ \begin{array}{c} $	354

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	N K N CO ₂ Me	NaH, DMF, rt, 2 h	$N = CN (-) + N^{3} \text{-isomer; } N^{1}:N^{3} = 5:1.2$	354
	$n-C_8H_{17}S \xrightarrow{O}_{O} \xrightarrow{O}_{N} \overset{O}{H} \overset{O}{H} \overset{O}{H} \overset{R^1}{F}$	<i>i</i> -Pr ₂ NEt, MeCN, π, 12 h	$BnO \longrightarrow O BnO \longrightarrow N \longrightarrow O SC_8H_{17} n$ (99) $\alpha:\beta = 51:48$	256a
	He H $R^{1} = H, SMe, SBn$	NaH, MeCN, rt, 48 h	(84) $\alpha:\beta = 34:54$ N N N N N N N N N N N N N	350
	NH2 N N H	NaH, MeCN	N = BnO BnO BnO BnO	1354
		1. NaH, MeCN, rt, 12 h	R = HO	
	<u>R'</u> н	2. Pd(OH) ₂ , cyclohexene, EtOH, reflux, 48 h	(60)	1303, 1354
	Cl	2. BCl ₃ , MeOH, rt, 30 min	(63)	1303,
	OMe	2. Pd(OH) ₂ , cyclohexene, EtOH, reflux, 48 h	(44)	1354 1303, 1354
	N ₃ OBn	 Pd(OH)₂, cyclohexene, EtOH, reflux, 48 h Pd(OH)₂, cyclohexene, EtOH, reflux, 48 h 	(41) (64)	1303, 1354
		NaH, MeCN, rt, 6 h	$\begin{pmatrix} N \\ N \\ R \\ R \\ C \\ C$	1353
	H_2N N H H H	NaH, MeCN, rt, 12 h	$NC \qquad CI \qquad (58)$ $N \qquad N \qquad NH_2$ $R \qquad (58)$	1299
	H_2N N H H	NaH, MeCN, 11, 15 h	$\bigvee_{\substack{N \\ N \\ R}}^{\text{Cl}} N $ (68) + N ⁷ -isomer (11)	1381
		NaH, DMF, rt, 2 h	$ \begin{pmatrix} C \\ N \\ N \\ R \end{pmatrix} (-) $	354
BnO BnO BnO	$\begin{pmatrix} N \\ \\ N \\ \\ \\ N \\ H \end{pmatrix} CO_2Et$	NaH, DMF, rt, 27 h	$ \begin{array}{c} $	355

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

Sugar	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
	SMe N N H	NaH, DMF, л, 18 h	SMe N N N N O	356
		KOH. TDA-1. MeCN, 24°	$(78) + \alpha \text{-anomer (6)}$	349
		КОН, TDA-1, MeCN, rt, 50 mia	$N = \frac{(43) + \alpha \text{-anomer } (6)}{N + N^7 \text{-isomer } (25)}$	340
BnO BnO BnO		KOH, TDA-1, MeCN	(69)	1382
	MeS N H	NaOH (50%), Bu ₄ NHSO ₄ , C ₆ H ₆ , DME, 15 min	(35) + R = OBRO BRO BRO BRO BRO BRO BRO BRO BRO BR	348
	Mes N H	NaOH (50%), TEBA, CH ₂ Cl ₂ , rt, 15 min	$(69) + \alpha \text{-anomer (14)}$ $N + SMc$ R	1383
BnO Cl BnO OBn	OBn N H ₂ N N H	NaH, DMF, п, 18 h	BnO OBn (33) BnO OBn NH_2	1165
	MeO N MeS N H	NaH, DMF, ri	$\begin{array}{c} \text{TrO-} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1384

TABLE XI. REACTIONS OF ACIDIC HETEROCYCLES WITH 1-HALOSUGARS IN THE PRESENCE OF BASES (Continued)

12. Acknowledgments

We thank Schering AG and in particular Drs. U. Eder, B. Mueller, K. Specht, and G. Stock for their long-lasting and unfailing support of this review. We are furthermore obliged to Mr. W. Becker, Miss C. Heinz, Miss N. Schidniogrotski, and Mrs. M. Golde for patiently writing and rewriting the text and drawing all of the formulas for this review. H. Vorbrüggen also thanks his colleagues of the Department of Organic Chemistry, Free University of Berlin, for their kind hospitality since his retirement from Schering AG in 1995.

End This reaction is commonly cited in the literature as the Vorbrüggen Reaction (chapter editor).

Notes

*

References

- 1. Fox, J. J.; Wempen, I. Adv. Carbohydr. Chem. Biochem. 1959, **14**, 283.
- 2. Pliml, J.; PrystaŠ, M. Adv. Heterocycl. Chem. 1967, 8, 115.
- Shimizu, B. Ann. Sankyo Res. Lab. 1967, 19, 1 [Chem. Abstr. 1968, 68, 96054y].
- 4. Zorbach, W. W. Synthesis 1970, 329.
- Goodman, L. In *Basic Principles in Nucleic Acid Chemistry*; Ts'o, P. O. P., Ed.; Academic: New York; 1974, p. 93.
- Vorbrüggen, H. In *Nucleoside Analogues*; Walker, R. T., De Clercq, E., Eckstein, F., Eds.; Plenum: New York; 1979, p. 35.
- Lukevics, E.; Tablecka, A. In *Nucleoside Synthesis Organosilicon Methods*; Horwood, E., Ed., New York, 1991.
- 7a. Wilson, L. J.; Hager, M. W.; El-Kattan, Y. A.; Liotta, D. C. Synthesis 1995, 1465.
- 8. Fuller, W. D.; Sanchez, R. A.; Orgel, L. E. J. Mol. Evol. 1972, 1, 249.
- 9. Fuller, W. D.; Sanchez, R. A.; Orgel, L. E. J. Mol. Biol. 1972, 67, 25.
- Müller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C. E.; Eschenmoser, A. Helv. Chim. Acta 1990, 73, 1410.
- 11. Orgel, L. E. J. Theor. Biol. 1986, **123**, 127.
- (a) Shapiro, R. Orig. Life Evol. Biosph. 1988, 18, 71. (b) Shapiro, R. Proc. Natl. Acad. Sci. USA 1999, 96, 4396.
- 13. Joyce, G. F. Nature 1989, **338**, 217.
- 14. Waldrop, M. M. Science 1989, 246, 1248.
- 15. Strazewski, P.; Tamm, C. Angew. Chem., Int. Ed. Engl. 1990, 29, 36.
- 16. Cech, T. R. Angew. Chem., Int. Ed. Engl. 1990, 29, 759.
- 17. Pace, N. R. Science 1992, 256, 1402.
- Piccirilli, J. A.; McConnell, T. S.; Zaug, A. J.; Noller, H. F.; Cech, T. R. Science 1992, **256**, 1420.
- 19. Eschenmoser, A.; Loewenthal, E. Chem. Soc. Rev. 1992, 21, 1.
- 20. Waldrop, M. M. Science 1992, 256, 1396.
- 20a. Gesterland, R. F.; Atkins, J. F. *The RNA World*; Cold Spring Harbor Laboratory Press, 1993.
- 20b. Kolb, V. M.; Dworkin, J. P.; Miller, S. L. J. Mol. Evol. 1994, 38, 549.
- 20c. Eschenmoser, A.; Kisakürek, M. V. Helv. Chim. Acta 1996, 79, 1249.
- 21. Stubbe, J. J. Biol. Chem. 1990, 265, 5329.
- 22. Nordlund, P.; Sjöberg, B.-M.; Eklund, H. Nature 1990, 345, 593.

- 23. Reichard, P. Science 1993, 260, 1773.
- 24. Suhadolnik, R. J. *Nucleoside Antibiotics*; Wiley-Interscience: New York, 1970.
- 25. Suck, D.; Saenger, W.; Vorbrüggen, H. Nature 1972, 235, 333.
- 26. Suck, D.; Saenger, W. J. Am. Chem. Soc. 1972, 94, 6520.
- 27. Egert, E.; Lindner, H. J.; Hillen, W.; Gassen, H. G.; Vorbrüggen, H. Acta Cryst. 1979, **35**, 122.
- Kasai, H.; Nishimura, S.; Vorbrüggen, H.; litaka, Y. FEBS Lett. 1979, 103, 270.
- 29. Jeffrey, G. A.; Sundaralingam, M. Adv. Carbohydr. Chem. Biochem. 1985, **43**, 203.
- 30. Granzin, J.; Saenger, W.; Stolarski, R.; Shugar, D. Z. Naturforsch. 1990, **45c**, 915.
- Camerman, N.; Mastropaolo, D.; Camerman, A. Proc. Natl. Acad. Sci. USA 1990, 87, 3534.
- 32. Harte, Jr., W. E.; Starrett, Jr., J. E.; Martin, J. C.; Mansuri, M. M. Biochem. Biophys. Res. Commun. 1991, **175**, 298.
- Schweizer, M. P.; Banta, E. B.; Witkowski, J. T.; Robins, R. K. J. Am. Chem. Soc. 1973, 95, 3770.
- 33a. Kreishman, G. P.; Witkowski, J. T.; Robins, R. K.; Schweizer, M. P. J. Am. Chem. Soc. 1972, **94**, 4894.
- Akhrem, A. A.; Mikhailopulo, I. A.; Abramov, A. F. Org. Magn. Reson. 1979, 12, 247.
- Serianni, A. S.; Kline, P. C.; Snyder, J. R. J. Am. Chem. Soc. 1990, 112, 5886.
- 36. Kline, P. C.; Serianni, A. S. J. Am. Chem. Soc. 1990, **112**, 7373.
- Rosemeyer, H.; Tóth, G.; Golankiewicz, B.; Kazimierczuk, Z.; Bourgeois, W.; Kretschmer, U.; Muth, H.-P.; Seela, F. J. Org. Chem. 1990, 55, 5784.
- Cao, X; Pfleiderer, W.; Rosemeyer, H.; Seela, F.; Bannwarth, W.; Schönholzer, P. Helv. Chim. Acta 1992, **75**, 1267.
- Hanessian, S.; Pernet, A. G. Adv. Carbohydr. Chem. Biochem. 1976, 33, 111.
- 40. James, S. R. J. Carbohydr., Nucleosides, Nucleotides 1979, 6, 417.
- 41. Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571.
- 42. Postema, M. H. D. Tetrahedron 1992, 48, 8545.
- 43. Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. Tetrahedron 1994, **36**, 10611.
- 44. Secrist, III, J. A. Org. React., in preparation.
- 45. Altmann, K.-H. Tetrahedron Lett. 1993, **34**, 7721.

- 45a. Huang, B.; Chen, B.; Hui, Y. Synthesis 1993, 769.
- 45b. Altmann, K.-H.; Freier, S. M.; Pieles, U.; Winkler, T. Angew. Chem., Int. Ed. Engl. 1994, **33**, 1654.
- 45c. Pickering, L.; Malhi, B. S.; Coe, P. L.; Walker, R. T. Tetrahedron 1995, **51**, 2719.
- 46. Zinner, H. Chem. Ber. 1950, 83, 153.
- 47. Guthrie, R. D.; Smith, S. C. Chem. Ind. 1968, 547.
- 48. Recondo, E. F.; Rinderknecht, H. Helv. Chim. Acta 1959, 42, 1171.
- 49. Yung, N.; Fox, J. J. In *Methods in Carbohydrate Chemistry*; Academic: New York; 1963, Vol. **2**, p. 108.
- Stevens, J. D.; Ness, R. K.; Fletcher, Jr., H. G. J. Org. Chem. 1968, 33, 1806.
- 51. Hoffer, M. Chem. Ber. 1960, 93, 2777.
- 52. Barker, R.; Fletcher, Jr., H. G. J. Org. Chem. 1961, 26, 4605.
- 53. Glaudemans, C. P. J.; Fletcher, Jr., H. G. J. Org. Chem. 1971, **36**, 3598.
- Sato, T. In Synthetic Procedures in Nucleic Acid Chemistry; Zorbach, W. W., Tipson, R. S., Eds.; Wiley-Interscience: New York; 1968; p. 264.
- 55. Diekmann, E.; Friedrich, K.; Fritz, H.-G. J. Prakt. Chem. 1993, **335**, 415
- 56. Fischer, E.; Helferich, B. Chem. Ber. 1914, 47, 210.
- 57. Ulbricht, T. L. V. Proc. Chem. Soc. 1962, 298.
- 58. Thacker, D.; Ulbricht, T. L. V. J. Chem. Soc. C 1968, 333.
- 59. Ukita, T.; Hayatsu, H.; Tomita, Y. Chem. Pharm. Bull. 1963, 11, 1068.
- 60. PrystaŠ, M.; Šorm, F. Collect. Czech. Chem. Commun. 1969, **34**, 2316.
- 61. Miyaki, M.; Shimizu, B. Chem. Pharm. Bull. 1970, 18, 1446.
- 61a. Watanabe, K. A.; Hollenberg, D. H.; Fox, J. J. J. Carbohydr., Nucleosides, Nucleotides 1974, **1**, 1.
- 62. Škoda, J.; BartoŠek, I.; Šorm, F. Collect. Czech. Chem. Commun. 1962, **27**, 906.
- Novák, J. J. K.; Šorm, F. Collect. Czech. Chem. Commun. 1962, 27, 902.
- 64. Kazimierczuk, Z.; Cottam, H. B.; Revankar, G. R.; Robins, R. K. J. Am. Chem. Soc. 1984, **106**, 6379.
- 65. Kawakami, H.; Matsushita, H.; Naoi, Y.; Itoh, K.; Yoshikoshi, H. Chem. Lett. 1989, 235.
- 66. Seela, F.; Winkeler, H.-D. J. Org. Chem. 1982, 47, 226.

- 67. Seela, F.; Gumbiowski, R. Heterocycles 1989, 29, 795.
- 68. Ramasamy, K.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1987, **24**, 863.
- 69. Hilbert, G. E.; Johnson, T. B. J. Am. Chem. Soc. 1930, 52, 2001.
- 70. Hilbert, G. E.; Johnson, T. B. J. Am. Chem. Soc. 1930, 52, 4489.
- 71. Hilbert, G. E.; Jansen, E. F. J. Am. Chem. Soc. 1936, 58, 60.
- 72. PrystaŠ, M.; FarkaŠ, J.; Šorm, F. Collect. Czech. Chem. Commun. 1965, **30**, 3123.
- 73. Birkofer, L.; Ritter, A.; Kühlthau, H. P. Angew. Chem. 1963, 4, 209.
- 74. Birkofer, L.; Ritter, A.; Kühlthau, H. P. Chem. Ber. 1964, 97, 934.
- 75. Nishimura, T.; Shimizu, B.; Iwai, I. Chem. Pharm. Bull. 1963, 11, 1470.
- 76. Nishimura, T.; Iwai, I. Chem. Pharm. Bull. 1964, 12, 357.
- 77. Wittenburg, E. Z. Chem. 1964, 4, 303.
- Colvin, E. N. Silicon in Organic Synthesis; Butterworths: London, 1981; p. 4.
- 78a. Klebe, J. F. Acc. Chem. Res. 1970, 3, 299.
- 79. Vorbrüggen, H.; Krolikiewicz, K.; Niedballa, U. Liebigs Ann. Chem. 1975, 988.
- 80. Wittenburg, E. Chem. Ber. 1968, 101, 1095.
- 81. Vorbrüggen, H.; Strehlke, P. Chem. Ber. 1973, 106, 3039.
- 82. Wanagat, U.; Liehr, W. Angew. Chem. 1957, 24, 783.
- Niedballa, U.; Vorbrüggen, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 461.
- 84. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654.
- Baker, B. R.; Schaub, R. E.; Kissman, H. M. J. Am. Chem. Soc. 1955, 77, 5911.
- 86. Furukawa, Y.; Honjo, M. Chem. Pharm. Bull. 1968, 16, 1076.
- 86a. Tiwari, K. N.; Secrist III, J. A.; Montgomery, J. A. Nucleosides & Nucleotides 1994, 13, 1819.
- 86b. Peterli-Roth, P.; Maguire, M. P.; León, E.; Rapoport, H. J. Org. Chem. 1994, **59**, 4186.
- 87. Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1977, 16, 817.
- 88. PrystaŠ, M.; Šorm, F. Collect. Czech. Chem. Commun. 1965, **30**, 1900.
- 89. Winkley, M. W.; Robins, R. K. J. Org. Chem. 1968, 33, 2822.
- 89a. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3660.
- 90. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1976, 41, 2084.
- Yoshimura, Y.; Sano, T.; Matsuda, A.; Ueda, T. Chem. Pharm. Bull. 1988, 36, 162.

- 92. Yoshimura, Y.; Matsuda, A.; Ueda, T. Nucleosides & Nucleotides 1988, **7**, 409.
- 93. Yoshimura, Y.; Matsuda, A.; Ueda, T. Chem. Pharm. Bull. 1989, **37**, 660.
- 94. El Subbagh, H. I.; Ping, L.-J.; Abushanab, E. Nucleosides & Nucleotides 1992, **11**, 603.
- 95. Hsu, L.-Y.; Wise, D. S.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. J. Org. Chem. 1992, **57**, 3354.
- 96. Jung, M. E.; Castro, C. J. Org. Chem. 1993, 58, 807.
- 97. Sujino, K.; Sugimura, H. Chem. Lett. 1993, 1187.
- 97a. Bévierre, M.-O.; De Mesmaeker, A.; Wolf, R. M.; Freier, S. M. Bioorg. Med. Chem. Lett. 1994, **4**, 237.
- 97b. Chemla, P. Tetrahedron Lett. 1993, **34**, 7391.
- 97c. Lipshutz, B. H.; Hayakawa, H.; Kato, K.; Lowe, R. F.; Stevens, K. L. Synthesis 1994, **12**, 1476.
- 97d. Sujino, K.; Sugimura, H. J. Chem. Soc., Chem. Commun. 1994, 2541.
- 97e. Sujino, K.; Sugimura, H. Tetrahedron Lett. 1994, 35, 1883.
- 97f. Danel, K.; Pedersen, E. B.; Nielsen, C. J. Med. Chem. 1998, 41, 191.
- 98. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3664.
- 99. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, **39**, 3668.
- 100. Lichtenthaler, F. W.; Voss, P.; Heerd, A. Tetrahedron Lett. 1974, 2141.
- Akhrem, A. A.; Adarich, E. K.; Kulinkovich, L. N.; Mikhailopulo, I. A.; Posshchast'eva, E. B.; Timoshchuk, V. A. Dokl. Akad. Nauk SSSR 1974, **219**, 99 [Chem. Abstr. 1975, **82**, 086532].
- 102. Ogawa, T.; Yasui, M.; Matsui, M. Agric. Biol. Chem. 1972, **36**, 913.
- 103. lenaga, K.; Pfleiderer, W. Chem. Ber. 1977, 110, 3449.
- 104. Ritzmann, G.; Ienaga, K.; Pfleiderer, W. Liebigs Ann. Chem. 1977, 1217.
- 105. Suzuki, T.; Sakaguchi, S.; Myata, Y.; Mori, T. JP 01139596, 1989 [Chem. Abstr. 1990, **112**, 36386a].
- 106. Mahmood, K.; Vasella, A.; Bernet, B. Helv. Chim. Acta 1991, 74, 1555.
- 106a. Mukaiyama, T.; Matsutani, T.; Shimomura, N. Chem. Lett. 1994, 2089.
- 106b. Mukaiyama, T.; Nagai, M.; Matsutani, T.; Shimomura, N. Nucleosides & Nucleotides 1996, 15, 17.
- 106c. Nagai, M.; Matsutani, T.; Mukaiyama, T. Heterocycles 1996, 42, 57.

- 107. Kondo, T.; Nakai, H.; Goto, T. Agric. Biol. Chem. 1971, 35, 1990.
- 108. Kondo, T.; Nakai, H.; Goto, T. Tetrahedron 1973, 29, 1801.
- 109. Cadet, J. J. Carbohydr., Nucleosides, Nucleotides 1975, 2, 459.
- 110. Ott, M.; Pfleiderer, W. Chem. Ber. 1974, 107, 339.
- 111. Autenrieth, D.; Schmid, H.; Ott, M.; Pfleiderer, W. Liebigs Ann. Chem. 1977, 1194.
- 112. Chow, K.; Danishefsky, S. J. Org. Chem. 1990, 55, 4211.
- 113. Kim, Y. H.; Kim, J. Y. Heterocycles 1988, 27, 71.
- 114. Okabe, M.; Sun, R.-C.; Tam, S. Y.-K.; Todaro, L. J.; Coffen, D. L. J. Org. Chem. 1988, **53**, 4780.
- 115. Okabe, M.; Sun, R.-C. Tetrahedron Lett. 1989, 30, 2203.
- 116. Beard, A. B.; Butler, P. I.; Mann, J.; Partlett, N. K. Carbohydr. Res. 1990, **205**, 87.
- 117. Faivre-Buet, V.; Grouiller, A.; Descotes, G. Nucleosides & Nucleotides 1992, **11**, 1651.
- 118. Noyori, R.; Hayashi, M. Chem. Lett. 1987, 57.
- 118a. Lloyd, A. E.; Coe, P. L.; Walker, R. T.; Howarth, O. W. J. Fluor. Chem. 1993, **60**, 239.
- 119. Mukaiyama, T.; Shimpuku, T.; Takashima, T.; Kobayashi, S. Chem. Lett. 1989, 145.
- 120. Mukaiyama, T.; Uchiro, H.; Shiina, I.; Kobayashi, S. Chem. Lett. 1990, 1019.
- 121. Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1989, **30**, 833.
- 122. Mukaiyama, T.; Kobayashi, S.; Shoda, S. Chem. Lett. 1984, 907.
- 123. Herscovici, J.; Montserret, R.; Antonakis, K. Carbohydr. Res. 1988, **176**, 219.
- 124. Mukaiyama, T.; Matsutani, T.; Shimomura, N. Chem. Lett. 1993, 1627.
- 125. Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem., Int. Ed. Engl. 1975, 14, 255.
- 126. Vorbrüggen, H.; Krolikiewicz, K. Liebigs Ann. Chem. 1980, 1438.
- 127. Carbon, J.; David, H.; Studier, M. H. Science 1968, 161, 1146.
- 128. Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem., Int. Ed. Engl. 1975, 14, 818.
- 129. Hamada, Y.; Kato, S.; Shioiri, T. Tetrahedron Lett. 1985, 26, 3223.
- 130. Hamada, Y.; Shioiri, T. J. Org. Chem. 1986, **51**, 5489.
- 131. Marsmann, H. C.; Horn, H. G. Z. Naturforsch. 1972, 27b , 1448.
- 132. Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem., Int. Ed. Engl. 1975, 14, 421.

- 133. Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, **114**, 1234.
- 133a. Mahling, J.-A.; Schmidt, R. R. Synthesis 1993, 325.
- 133b. Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Liebigs Ann. Chem. 1995, 461.
- 133c. Mahling, J.-A.; Schmidt, R. R. Liebigs Ann. Chem. 1995, 467.
- 134. Olah, G. A.; Narang, S. C.; Balaram Gupta, B. G.; Malhotra, R. J. Org. Chem. 1979, **44**, 1247.
- 135. Matsuda, A.; Kurasawa, Y.; Watanabe, K. A. Synthesis 1981, 748.
- 136. Tocik, Z.; Earl, R. A.; Beránek, J. Nucleic Acids Res. 1980, 8, 4755.
- 137. Tocik, Z.; Beránek, J. Nucleic Acids Res., Symp. Ser. 9 1981, 37.
- 138. Huang, Z.; Schneider, K. C.; Benner, S. A. J. Org. Chem. 1991, **56**, 3869.
- Kobylinskaya, V. I.; Dashevskaya, T. A.; Shalamai, A. S.; Levitskaya,
 Z. V. Zh. Obshch. Khim. 1992, 62, 1115 [Chem. Abstr. 1993, 118, 39326r].
- 139a. Ohsawa, K.; Shiozawa, T.; Achiwa, K.; Terao, Y. Chem. Pharm. Bull. 1993, **41**, 1906.
- 139b. Murata, S.; Noyori, R. Tetrahedron Lett. 1980, **21**, 767.
- 139c. Dwyer, O. Synlett 1995, 1163.
- 139d. Tse, A.; Mansour, T. S. Tetrahedron Lett. 1995, 36, 7807.
- 140. Zou, R.; Robins, M. J. Can. J. Chem. 1987, 65, 1436.
- 141. Robins, M. J.; Zou, R.; Hansske, F.; Madej, D.; Tyrrell, D. L. J. Nucleosides & Nucleotides 1989, **8**, 725.
- 141a. Robins, M. J.; Zou, R.; Guo, Z.; Wnuk, S. F. J. Org. Chem. 1996, **61**, 9207.
- 142. Garner, P.; Ramakanth, S. J. Org. Chem. 1988, 53, 1294.
- 143. Raju, N.; Robins, R. K.; Vaghefi, M. M. J. Chem. Soc., Chem. Commun. 1989, 1769.
- 143a. El-Kattan, Y.; Gosselin, G.; Imbach, J.-L. Bull. Soc. Chim. Fr. 1994, 131, 118.
- 143b. El-Kattan, Y.; Gosselin, G.; Imbach, J.-L. J. Chem. Soc., Perkin Trans. 1 1994, 1289.
- 144. Clausen, F. P.; Juhl-Christensen, J. Org. Prep. Proced. Int. 1993, **25**, 375.
- 145. Ferrier, R. J. Top. Curr. Chem. 1970, 14, 389.
- 146. Vorbrüggen, H.; Bennua, B. unpublished results.
- 147. Altermatt, R.; Tamm, C. Helv. Chim. Acta 1985, 68, 475.
- 148. Walczak, K.; Pedersen, E. B. Acta Chem. Scand. 1991, 45, 930.
- 149. Efange, S. M. N.; Dutta, A. K. Nucleosides & Nucleotides 1991, **10**, 1451.
- 150. PrystaŠ, M.; Šorm, F. Collect. Czech. Chem. Commun. 1964, 29, 131.
- 151. Yamaguchi, T.; Saneyoshi, M. Chem. Pharm. Bull. 1984, 32, 1441.
- 151a. Koga, M.; Wilk, A.; Moore, M. F.; Scremin, C. L.; Zhou, L.; Beaucage, S.L. J. Org. Chem. 1995, 60, 1520.
- 152. Ward, D. I.; Jeffs, S. M.; Coe, P. L.; Walker, R. T. Tetrahedron Lett. 1993, **34**, 6779.
- 152a. Ward, D. I.; Coe, P. L.; Walker, R. T. Collect. Czech. Chem. Commun., Special Issue 1993, **58**, 1.
- 152b. Larsen, E.; Jørgensen, P. T.; Sofan, M. A.; Pedersen, E. B. Synthesis 1994, 1037.
- 152c. Cameron, M. A.; Cush, S. B.; Hammer, R. P. J. Org. Chem. 1997, **62**, 9065.
- Dyatkina, N. B.; Arzumanov, A. A. In *Biophosphates and Their* Analogues-Synthesis, Structure, Metabolism, and Activity; Bruzik, K. S., Stec, W. J., Eds.; Elsevier: Amsterdam; 1987; p. 395.
- 154. Danishefsky, S.; Hungate, R. J. Am. Chem. Soc. 1986, **108**, 2486.
- 155. Danishefsky, S.; Hungate, R.; Schulte, G. J. Am. Chem. Soc. 1988, **1110**, 7434.
- 156. Kozaki, S.; Sakanaka, O.; Yasuda, T.; Shimizu, T.; Ogawa, S.; Suami,T. J. Org. Chem. 1988, **53**, 281.
- 157. Sakanaka, O.; Ohmori, T.; Kozaki, S.; Suami, T. Bull. Chem. Soc. Jpn. 1987, **60**, 1057.
- 158. Maier, S.; Preuss, R.; Schmidt, R. R. Liebigs Ann. Chem. 1990, 483.
- 159. Ikemoto, N.; Schreiber, S. L. J. Am. Chem. Soc. 1990, **112**, 9657.
- 160. Ikemoto, N.; Schreiber, S. L. J. Am. Chem. Soc. 1992, **114**, 2524.
- 160a. Knapp, S. Chem. Rev. 1995, **95**, 1859.
- 161. Ferris, J. P.; Devadas, B.; Huang, C.-H.; Ren, W.-Y. J. Org. Chem. 1985, **50**, 747.
- 162. Marquez, V. E. Nucleosides & Nucleotides 1983, 2, 81.
- 162a. Ochoa, C.; Provencio, R.; Jimeno, M. L.; Balzarini, J.; De Clercq, E. Nucleosides & Nucleotides 1998, **17**, 901.
- 163. Miyaki, M.; Saito, A.; Shimizu, B. Chem. Pharm. Bull. 1970, 18, 2459.
- 164. Lichtenthaler, F. W.; Kitahara, K. Angew. Chem., Int. Ed. Engl. 1975, 14, 815.
- 165. Azuma, T.; Isono, K.; Crain, P. F.; McCloskey, J. A. Tetrahedron Lett.

1976, 1687.

- 166. Azuma, T.; Isono, K. Chem. Pharm. Bull. 1977, 25, 3347.
- 167. Azuma, T.; Isono, K.; Crain, P. F.; McCloskey, J. A. J. Chem. Soc., Chem. Commun. 1977, 159.
- 168. Mizuno, Y.; Tsuchida, K.; Tampo, H. Chem. Pharm. Bull. 1984, **32**, 2915.
- 169. Murofushi, Y.; Kimura, M.; Kuwano, H.; lijima, Y.; Yamazaki, M.; Kaneko, M. Nucleic Acids Res., Symp. Ser. **17** 1986, p. 45.
- 170. Imazawa, M.; Eckstein, F. J. Org. Chem. 1978, 43, 3044.
- 171. Robins, M. J.; Wood, S. G.; Dalley, N. K.; Herdewijn, P.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1989, **32**, 1763.
- 172. Eckstein, F.; Hunsmann, G.; Hartmann, H. EP 286825, 1988 [Chem. Abstr. 1989, **110**, 18537e].
- 173. Eckstein, F.; Hunsmann, G.; Hartmann, H. DE 3,639,780, 1988 [Chem. Abstr. 1988, **109**, 170808f].
- 174. Matthes, E.; Lehmann, C.; Scholz, D.; Von, J. L.; Gaertner, K.; Langen, P.; Rosenthal, H. A. EP 254268, 1988 [Chem. Abstr. 1988, 109, 55173h].
- 175. Kowollik, G.; Langen, P.; Kvasyuk, E. I.; Mikhailopulo, I. A. DD 158903, 1983 [Chem. Abstr. 1983, **99**, 158785p].
- Dyatkina, N. B.; Alexandrova, L. A.; von Janta-Lipinski, M.; Langen, P. Z. Chem. 1985, 25, 180.
- 177. Atlas, A. EP 322384, 1989; JP 01,151595 [Chem. Abstr. 1990, **112**, 36387b].
- 178. Suzuki, T.; Sakaguchi, S.; Myata, Y.; Mori, T. JP 01151595, 1989 [Chem. Abstr. 1990, **112**, 36387b].
- 179. Imazawa, M.; Eckstein, F. J. Org. Chem. 1979, 44, 2039.
- 180. Sugiura, Y.; Furuya, S.; Furukawa, Y. Chem. Pharm. Bull. 1988, **36**, 3253.
- 181. Boryski, J.; Golankiewicz, B. Nucleosides & Nucleotides 1989, 8, 529.
- 181a. Boryski, J. Collect. Czech. Chem. Commun., Special Issue 1993, 58,3.
- 182. Shiragami, H.; Koguchi, Y.; Izawa, K. EP 0532878, 1993 [Chem. Abstr. 1993, **119**, 226348g].
- 183. Kato, K.; Minami, T.; Takita, T.; Nishiyama, S.; Yamamura, S.; Naganawa, H. Tetrahedron Lett. 1989, **30**, 2269.
- 184. Neumann, A.; Cech, D.; Schubert, F. Z. Chem. 1989, 29, 209.
- 185. Spadari, S.; Maga, G.; Focher, F.; Ciarrocchi, G.; Manservigi, R.; Arcamone, F.; Capobianco, M.; Carcuro, A.; Colonna, F.; lotti, S.; Garbesi, A. J. Med. Chem. 1992, **35**, 4214.

- 186. Roig, V.; Kurfurst, R.; Thuong, N. T. Tetrahedron Lett. 1993, 34, 1601.
- 186a. Boryski, J. Nucleosides & Nucleotides 1996, 15, 771.
- 187. Cooper, B. E. Chem. Ind. 1978, 794.
- 188. Vorbrüggen, H.; Bennua, B. Tetrahedron Lett. 1978, 1339.
- 189. Vorbrüggen, H.; Bennua, B. Chem. Ber. 1981, 114, 1279.
- 190. Dudycz, L. W.; Wright, G. E. Nucleosides & Nucleotides 1984, 3, 33.
- 191. Su, T. L.; Bennua, B.; Vorbrüggen, H.; Lindner, H. J. Chem. Ber. 1981, 114, 1269.
- 192. Böhringer, M.; Roth, H.-J.; Hunziker, J.; Göbel, M.; Krishnan, R.; Giger, A.; Schweizer, B.; Schreiber, J.; Leumann, C.; Eschenmoser, A. Helv. Chim. Acta 1992, **75**, 1416.
- 192a. Saneyoshi, M.; Satoh, E. Chem. Pharm. Bull. 1979, 27, 2518.
- 192b. Nakayama, C.; Saneyoshi, M. Nucleosides & Nucleotides 1982, 1, 139.
- 192c. Iyer, V. K.; Butler, W. B.; Horwitz, J. P.; Rozhin, J.; Brooks, S. C.; Corombos, J.; Kessel, D. J. Med. Chem. 1983, **26**, 162.
- 192d. Sinhababu, A. K.; Bartel, R. L.; Pochopin, N.; Borchardt, R. T. J. Am. Chem. Soc. 1985, **107**, 7628.
- 192e. Gosselin, G.; Bergogne, M.-C.; De Rudder, J.; De Clercq, E.; Imbach, J.-L. J. Med. Chem. 1986, **29**, 203.
- 192f. Gosselin, G.; Bergogne, M.-C.; Imbach, J.-L.; De Rudder, J.; De Clercq, E. Nucleosides & Nucleotides 1987, **6**, 65.
- 192g. Maguire, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1990, **55**, 948.
- 192h. Périgaud, C.; Gosselin, G.; Imbach, J.-L. J. Chem. Soc., Perkin Trans. 1 1992, 1943.
- 192i. Gosselin, G.; Bergogne, M.-C.; Imbach, J.-L. J. Heterocycl. Chem. 1993, **30**, 1229.
- 192j. Serra, C.; Dewynter, G.; Montero, J.-L.; Imbach, J.-L. Tetrahedron 1994, **50**, 8427.
- 192k. Papageorgiou, C.; Tamm, C. Tetrahedron Lett. 1986, 555.
- 1921. Ghosh, A. K.; Liu, W. J. Org. Chem. 1996, 61, 6175.
- 192m. H ebabecký, H.; Do kal, J.; Holý, A. Collect. Czech. Chem. Commun. 1994, **59**, 1408.
- 192n. H ebabecký, H.; Holý, A. Collect. Czech. Chem. Commun. 1994, **59**, 1654.
- 1920. Sheppard, T. L.; Rosenblatt, A. T.; Breslow, R. J. Org. Chem. 1994, **59**, 7243.
- 192p. Gosselin, G.; Imbach, J.-L. J. Heterocycl. Chem. 1982, 19, 597

- 193. Vorbrüggen, H.; Niedballa, U.; Krolikiewicz, K.; Bennua, B.; Höfle, G. In *Chemistry and Biology of Nucleosides and Nucleotides*; Harmon, R. E., Robins, R. K., Townsend, L. B., Eds.; Academic: New York, 1978; p. 251.
- 194. Vorbrüggen, H.; Höfle, G. Chem. Ber. 1981, 114, 1256.
- 195. Anderson, C. B.; Friedrich, E. C.; Winstein, S. Tetrahedron Lett. 1963, 2037.
- 196. Hart, H.; Tomalia, D. A. Tetrahedron Lett. 1966, 3383.
- 197. Paulsen, H.; Meyborg, H. Chem. Ber. 1975, 108, 3176.
- 198. Paulsen, H. Adv. Carbohydr. Chem. Biochem. 1971, 26, 127.
- 198a. Doboszewski, B.; Herdewijn, P. Tetrahedron 1996, 52, 1651.
- 199. Krimen, L. I.; Cota, D. J. Org. React. 1969, 17, 213.
- 200. Klemer, A.; Kohla, M. J. Carbohydr. Chem. 1988, 7, 785.
- 201. Martinez, A. G.; Alvarez, R. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. Tetrahedron Lett. 1989, **30**, 581.
- 202. Ratcliffe, A. J.; Fraser-Reid, B. J. Chem. Soc., Perkin Trans. 1 1989, 1805.
- 203. Ratcliffe, A. J.; Fraser-Reid, B. J. Chem. Soc., Perkin Trans. 1 1990, 747.
- 204. Heinemann, F.; Hiegemann, M.; Welzel, P. Tetrahedron 1992, 48, 3781.
- 205. Baker, B. R.; Joseph, J. P.; Schaub, R. E.; Williams, J. H. J. Org. Chem. 1954, **19**, 1786.
- 206. Ogawa, T.; Beppu, K.; Nakabayashi, S. Carbohydr. Res. 1981, 93, C6.
- 207. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.
- 208. Kimura, Y.; Suzuki, M.; Matsumoto, T.; Abe, R.; Terashima, S. Chem. Lett. 1984, 501.
- 208. Terashima, S. Synlett 1992, 691.
- 209. Kolar, C.; Kneissl, G. Angew. Chem., Int. Ed. Engl. 1990, 29, 809.
- 209a. Roush, W. R.; Briner, K.; Sebesta, D. P. Synlett 1993, 264.
- 209b. Sliedregt, L. A. J. M.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett. 1994, **35**, 4015.
- 029c. Teng, K.; Cook, P. D. J. Org. Chem. 1994, 59, 278.
- 209d. Ludin, C.; Weller, T.; Seitz, B.; Meier, W.; Erbeck, S.; Hoenke, C.; Krieger, R.; Keller, M.; Knothe, L.; Pelz, K.; Wittmer, A.; Prinzbach, H. Liebigs Ann. Chem. 1995, 291.
- 210. Kochetkov, N. K.; Khorlin, A. J.; Bochkov, A. F. Tetrahedron 1967, **23**, 693.

- 211. Kochetkov, N. K.; Bochkov, A. F. Recent Dev. Chem. Nat. Carbon Compd. 1971, **4**, 75 [Chem. Abstr. 1972, **76**, 599144].
- 212. Shone, R. L. Tetrahedron Lett. 1977, 993.
- 212a. Shone, R. L. Tetrahedron Lett. 1977, 4017.
- 213. Prisbe, E. J.; Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem. 1978, **43**, 4784.
- 213a. Frame, A. S.; Wightman, R. H.; Mackenzie, G. Tetrahedron 1996, **52**, 9219.
- 214. Riley, T. A.; Larson, S. B.; Avery, T. L.; Finch, R. A.; Robins, R. K. J. Med. Chem. 1990, **33**, 572.
- 215. Ototani, N.; Whistler, R. L. J. Med. Chem. 1974, 17, 535.
- 216. Brink, A. J.; Jordaan, A. Carbohydr. Res. 1975, 41, 355.
- 217. Brink, A. J.; de Villiers, O. G.; Jordaan, A. J. Chem. Soc., Perkin Trans. 1 1977, 1608.
- 218. Garg, H. G.; Jeanloz, R. W. Carbohydr. Res. 1978, 62, 185.
- 219. Ritzmann, G.; Klein, R. S.; Hollenberg, D. H.; Fox, J. J. Carbohydr. Res. 1975, **39**, 227.
- 220. Kiss, J.; D'Souza, R. J. Carbohydr., Nucleosides, Nucleotides 1980, 7, 141.
- 221. Kiss, J.; D'Souza, R.; van Koeveringe, J. A.; Arnold, W. Helv. Chim. Acta 1982, 65, 1522.
- 222. Mikhailov, S. N. Bioorg. Khim. 1984, 10, 940 [Chem. Abstr. 1984, 102, 7016t].
- 223. Mikhailov, S. N.; Pfleiderer, W. Synthesis, 1985, 397.
- 223a. Pfleiderer, W. Universitätsstr. 10, D-78464 Konstanz, Germany, personal communication.
- 224. Jung, K.-H.; Schmidt, R. R. Chem. Ber. 1980, 113, 1775.
- 225. Haines, A. H. Tetrahedron 1973, 29, 2807.
- 226. Chavis, C.; Dumont, F.; Wightman, R. H.; Ziegler, J. C.; Imbach, J. L. J. Org. Chem. 1982, **47**, 202.
- 226a. Pudlo, J. S.; Townsend, L. B. Nucleosides & Nucleotides 1992, **11**, 279.
- 226b. Parmentier, G.; Schmitt, G.; Dolle, F.; Luu, B. Tetrahedron 1994, **50**, 5361.
- 226c. Chanteloup, L.; Thuong, N. T. Tetrahedron Lett. 1994, **35**, 877.
- 227. Wilson, L. J.; Liotta, D. Tetrahedron Lett. 1990, **31**, 1815.
- 228. Kawakami, H.; Ebata, T.; Koseki, K.; Matsushita, H.; Naoi, Y.; Itoh, K. Chem. Lett. 1990, 1459.
- 229. Kawakami, H.; Ebata, T.; Koseki, K.; Matsumoto, K.; Matsushita, H.;

Naoi, Y.; Itoh, K. Heterocycles 1991, 32, 2451.

- 229a. Kawakami, H.; Ebata, T.; Koseki, K.; Okano, K.; Matsumoto, K.; Matsushita, H. Heterocycles 1993, **36**, 2765.
- 230. Chu, C. K.; Babu, J. R.; Beach, J. W.; Ahn, S. K.; Huang, H.; Jeong, L. S.; Lee, S. J. J. Org. Chem. 1990, **55**, 1418.
- 230a. Beach, J. W.; Kim, H. O.; Jeong, L. S.; Nampalli, S.; Islam, Q.; Ahn, S. K.; Babu, J. R.; Chu, C.K. J. Org. Chem. 1992, **57**, 3887.
- 231. Chu, C. K.; Beach, J. W.; Babu, J. R.; Jeong, L. S.; Jeong, H. K.; Ahn, S. K.; Islam, Q.; Lee, S. J.; Chen, Y. Nucleosides & Nucleotides 1991, 10, 423.
- Forestier, M. A.; Ayi, A.I.; Condom, R.; Boyode, B. P.; Colin, J. N.; Selway, J.; Challand, R.; Guedj, R. Nucleosides & Nucleotides 1993, 12, 915.
- 233. Nishiyama, S.; Yamamura, S.; Kato, K.; Takita, T. Tetrahedron Lett. 1988, **29**, 4743.
- 234. Perrin, D. D. *Dissociation Constants of Organic Bases in Aqueous Solution*; Butterworth: London, 1965.
- 235. Choi, W-B.; Wilson, L. J.; Yeola, S.; Liotta, D. C.; Schinazi, R. F. J. Am. Chem. Soc. 1991, **113**, 9377.
- 236. Björsne, M.; Classon, B.; Kvarnström, I.; Samuelsson, B. Tetrahedron 1993, **49**, 8637.
- 237. Stothers, J. B. *Carbon-13 NMR Spectroscopy*; Academic: New York, 1972, p. 265.
- 238. Wierenga, W.; Skulnick, H. I.; Tetrahedron Lett. 1979, 3631.
- 239. Skulnick, H. J. Org. Chem. 1978, 43, 3188.
- 240. Bassindale, A. R.; Stout, T. Tetrahedron Lett. 1985, 26, 3403.
- 241. Hayashi, M.; Hirano, T.; Yaso, M.; Mizuno, K.; Ueda, T. Chem. Pharm. Bull. 1975, **23**, 245.
- 242. Tarumi, Y.; Moriguchi, K.; Atsumi, T. J. Heterocycl. Chem. 1984, **21**, 529.
- 243. Tarumi, Y.; Takebayashi, Y.; Atsumi, T. J. Heterocycl. Chem. 1984, **21**, 849.
- 244. Reetz, M. T.; Hüllmann, M.; Seitz, T. Angew. Chem., Int. Ed. Engl. 1987, **26**, 477.
- 245. Castellino, S. J. Org. Chem. 1990, 55, 5197.
- 246. Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Angew. Chem., Int. Ed. Engl. 1990, **29**, 256.
- 247. Csürös, Z.; Deák, G.; Gyurkovics, I.; Haraszthy-Papp, M.;
 Zára-Kaczián, E. Acta Chim. Acad. Sci. Hung. 1971, 67, 93 [Chem. Abstr. 1971, 74, 112315r].

- 248. Csürös, Z.; Deák, G.; Holly, S.; Török-Kalmár, A.; Zára-Kaczián, E. Acta Chim. Acad. Sci. Hung. 1969, 62, 95 [Chem. Abstr. 1970, 72, 18051p].
- 249. Beach, J. W.; Jeong, L. S.; Alves, A. J.; Pohl, D.; Kim, H. O.; Chang, C.-N.; Doong, S.-L.; Schinazi, R. F.; Cheng, Y.-C.; Chu, C. K. J. Org. Chem. 1992, **57**, 2217.
- 249a. Wang, W.; Jin, H.; Mansour, T. S. Tetrahedron Lett. 1994, 35, 4739.
- 249b. Bednarski, K.; Dixit, D. M.; Wang, W.; Evans, C. A.; Jin, H.; Yuen, L.; Mansour, T. S. Bioorg. Med. Chem. Lett. 1994, **4**, 2667.
- 249c. Jin. H.; Siddiqui, M. A.; Evans, C. A.; Tse, H. L. A.; Mansour, T. S.; Goodyear, M. D.; Ravenscroft, P; Beels, C. D. J. Org. Chem. 1995, **60**, 2621.
- 249d. Liang, C.; Lee, D. W.; Newton, M. G.; Chu, C. K. J. Org. Chem. 1995, **60**, 1546.
- 249e. Milton, J.; Brand, S.; Jones, M. F.; Rayner, C. M. Tetrahedron Lett. 1995, **36**, 6961.
- 249f. Mansour, T. S.; Jin, H; Wang, W.; Hooker, E. U.; Ashman, C.; Cammack, N.; Salomon, H.; Belmonte, A. R.; Wainberg, M. A. J. Med. Chem. 1995, **38**, 1.
- 249g. Huang, J.; Rideout, J. L.; Martin, G. E. Nucleosides & Nucleotides 1995, **14**, 195.
- 249h. Breining, T.; Cimpoia, A. R.; Mansour, T. S.; Cammack, N.; Hopewell, P.; Ashman, C. Heterocycles 1995, **41**, 87.
- 249i. Mourier, N.; Trabaud, C.; Niddam, V.; Graciet, J. C.; Camplo, M.; Chermann, J.-C.; Kraus, J.-L. Nucleosides & Nucleotides 1996, **15**, 1397.
- 249j. Pan, B.-C.; Cheng, Y.-C.; Chu, S.-H. J. Heterocycl. Chem. 1997, **34**, 909.
- 249k. Du, J.; Surzhykov, S.; Lin, J. S.; Newton, M. G.; Cheng, Y.-C.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 1997, **40**, 2991.
- 250. Dubois, C. Bull. Soc. Chim. Fr. 1978, I-143.
- 251. Beattie, I. R.; Rule, L. J. Chem. Soc. 1964, 3267.
- 252. Schönfeld, P.; Döring, I.; Jahnke, D.; Reinheckel, H. Z. Chem. 1976, **16**, 22.
- 253. Bambury, R. E.; Feeley, D. T.; Lawton, G. C.; Weaver, J. M.; Wemple, J. J. Med. Chem. 1984, 27, 1613.
- 254. Holý, A. J. Carbohydr., Nucleosides, Nucleotides 1978, 5, 487.
- 255. Itoh, T.; Melik-Ohanjanian, R. G.; Ishikawa, I.; Kawahara, N.; Mizuno, Y.; Honma, Y.; Hozumi, M.; Ogura, H. Chem. Pharm. Bull. 1989, **37**, 3184.

- 256. Felczak, K.; Samulewicz, I.; Drabikowska, A. K.; Kulikowski, T.; Shugar, D. Nucleic Acids Res. Symp. Ser. 18 1987, 65.
- 256a. Watanabe, Y.; Uemura, A.; Ohrai, K.; Nagase, T.; Ozaki, S. Nucleic Acids Res., Symp. Ser. 16 1985, 53.
- 257. Barascut, J. L.; de Marichard, C. O.; Imbach, J. L. J. Carbohydr., Nucleosides, Nucleotides 1976, **3**, 281.
- 258. Witkowski, J. T.; Robins, R. K. J. Org. Chem. 1970, 35, 2635.
- 259. Witkowski, J. T.; Robins, R. K.; Sidwell, R. W.; Simon, L. N. J. Med. Chem. 1972, **15**, 1150.
- 260. Kotick, M. P.; Szantay, C.; Bardos, T. J. J. Org. Chem. 1969, 34, 3806.
- 261. Hubbard, A. J.; Jones, A. S.; Walker, R. T. Nucleic Acids Res., Symp. Ser. 12 1984, 6827.
- 262. Seela, F.; Westermann, B.; Bindig, U. J. Chem. Soc., Perkin Trans. 1 1988, 697.
- 263. PrystaŠ, M.; Šorm, F. Collect. Czech. Chem. Commun. 1964, 29, 121.
- 264. Fox, J. J.; Yung, N. C.; Wempen, I.; Hoffer, M. J. Am. Chem. Soc. 1961, **83**, 4066.
- 265. Minnemeyer, H. J.; Clarke, P. B.; Tieckelmann, H.; Holland, J. F. J. Med. Chem. 1964, **7**, 567.
- 266. Bardos, T. J.; Kotick, M. P.; Szantay, C. Tetrahedron Lett. 1966, 1759.
- 267. Aoyama, H. Bull. Chem. Soc. Jpn. 1987, 60, 2073.
- 268. Ryan, K. J.; Acton, E. M.; Goodman, L. J. Org. Chem. 1966, 31, 1181.
- 269. Kawakami, H.; Ebata, T.; Koseki, K.; Matsushita, H.; Naoi, Y.; Itoh, K.; Mizutani, N. Heterocycles 1990, **31**, 569.
- 270. Kazimierczuk, Z.; Binding, U.; Seela, F. Helv. Chim. Acta 1989, **72**, 1527.
- 271. Kazimierczuk, Z.; Seela, F. Helv. Chim. Acta 1990, 73, 316.
- 272. Kulikowski, T.; Shugar, D. J. Med. Chem. 1974, 17, 269.
- 272a. Prystas, M. Collect. Czech. Chem. Commun. 1975, 40, 1786.
- 273. Freskos, J. N. Nucleosides & Nucleotides 1989, 8, 549.
- 273a. Freskos, J. N. Nucleosides & Nucleotides 1989, 8, 1075.
- 274. Sanghvi, Y. S.; Hoke, G. D.; Freier, S. M.; Zounes, M. C.; Gonzalez, C.; Cummins, L.; Sasmor, H.; Cook, P. D. Nucleic Acids Res., Symp. Ser. 21 1993, 3197.
- 275. Peters, D.; Hörnfeldt, A.-B.; Gronowitz, S.; Johansson, N. G. Nucleosides & Nucleotides 1992, **11**, 1151.
- 275a. Wellmar, U.; Hörnfeldt, A.-B.; Gronowitz, S. Nucleosides & Nucleotides 1996, **15**, 1059.
- 275b. Michel, J.; Gueguen, G.; Vercauteren, J.; Moreau, S. Tetrahedron

1997, **53**, 8457.

- 276. Kawakami, H.; Ebata, T.; Koseki, K.; Matsumoto, K.; Matsushita, H.; Naoi, Y.; Itoh, K. Heterocycles 1990, **31**, 2041.
- 276a. Jungmann, O.; Pfleiderer, W. Tetrahedron Lett. 1996, 37, 8355.
- 277. Okauchi, T.; Kubota, H.; Narasaka, K. Chem. Lett. 1989, 801.
- 278. Lavallée, J.-F.; Just, G. Tetrahedron Lett. 1991, 32, 3469.
- 278a. Young, R. J.; Shaw-Ponter, S.; Hardy, G. W.; Mills, G. Tetrahedron Lett. 1994, **35**, 8687.
- 278b. Mukaiyama, T.; Hirano, N.; Nishida, M.; Uchiro, H. Chem. Lett. 1996, 99.
- 278c. Mukaiyama, T.; Ishikawa, T.; Uchiro, H. Chem. Lett. 1997, 389.
- 279. Dyatkina, N. B.; Kraevskii, A. A.; Azhaev, A. B. Bioorg. Khim. 1986,
 12, 1048 [Chem. Abstr. 1987, 107, 78188q].
- 280. Chu, C. K.; Beach, J. W.; Ullas, G. V.; Kosugi, Y. Tetrahedron Lett. 1988, **29**, 5349.
- 281. Fleet, G. W. J.; Son, J. C.; Derome, A. E. Tetrahedron 1988, 44, 625.
- 282. Chu, C. K.; Raghavachari, R.; Beach, J. W.; Kosugi, Y.; Ullas, G. V. Nucleosides & Nucleotides 1989, **8**, 903.
- 283. Bou, V.; Vilarrasa, J. Tetrahedron Lett. 1990, **31**, 567.
- 284. Jung, M. E.; Gardiner, J. M. J. Org. Chem. 1991, 56, 2614.
- 285. Wengel, J.; Pedersen, E. B. Synthesis 1991, 451.
- 286. El-Torgoman, A. M.; Motawia, M. S.; Kjærsgaard, U.; Pedersen, E. B. Monatsh. Chem. 1992, **123**, 355.
- 287. Greengrass, C. W.; Hoople, D. W. T.; Street, S. D. A.; Hamilton, F.; Marriott, M. S.; Bordner, J.; Dalgleish, A. G.; Mitsuya, H.; Broder, S. J. Med. Chem. 1989, **32**, 618.
- 288. Etzold, G.; Hintsche, R.; Kowollik, G.; Langen, P. Tetrahedron 1971, **27**, 2463.
- 289. Datema, R.; Lindborg, B. G.; Kovacs, Z. M. I.; Ligure, P.; Stening, G. B.; Johansson, K. N. G.; Öberg, B. F. WO 8808001, 1988 [Chem. Abstr. 1989, **110**, 232026f].
- 290. Mikhailopulo, I. A.; Pricota, T. I.; Poopeiko, N. E.; Klenitskaya, T. V.; Khripach, N. B. Synthesis 1993, 700.
- 291. Motawia, M. S.; Jørgensen, P. T.; Larnkjær, A.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1993, **124**, 55.
- 292. Häbich D.; Neumann, R. EP 0507188, 1992 [Chem. Abstr. 1993, **119**, 203761x].
- 293. Dueholm, K. L.; Pedersen, E. B. Synthesis 1992, 1.
- 294. Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745.

- 295. Herdewijn, P.; Balzarini, J.; De Clercq, E. Adv. Antiviral Drug Design 1993, **1**, 233.
- 296. Morisawa, Y.; Yasuda, A.; Uchida, K. JP 02270893, 1990 [Chem. Abstr. 1991, **114**, 143939w].
- 297. Sahlberg, C. Tetrahedron Lett. 1992, 33, 679.
- 298. Chu, C. K.; Ullas, G. V.; Jeong, L. S.; Ahn, S. K.; Doboszewski, B.; Lin, Z. X.; Beach, J. W.; Schinazi, R. F. J. Med. Chem. 1990, **33**, 1553.
- 299. Hager, M. W.; Liotta, D. C. J. Am. Chem. Soc. 1991, **113**, 5117.
- 300. Hager, M-W.; Liotta, D. C. Tetrahedron Lett. 1992, **33**, 7083.
- 301. Drugs of the Future 1990, 794.
- 301a. Drugs of the Future 1993, 764.
- 302. Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1988, **53**, 2406.
- 303. Chou, T. S.; Heath, P. C.; Patterson, L. E.; Poteet, L. M.; Lakin, R. E.; Hunt, A. H. Synthesis 1992, 565.
- 304. Britton, T. C.; LeTourneau, M. E. EP 0587364, 1993 [Chem. Abstr. 1994, **121**, 180125t].
- 305. Kawakami, H.; Matsumoto, K.; Koseki, K.; Ebata, T. WO 9222548,
 1991 [Chem. Abstr. 1993, **118**, 213452r].
- 305a. Kawakami, H.; Ebata, T.; Koseki, K.; Matsumoto, K.; Okano, K.; Matsushita, H. Nucleosides & Nucleotides 1992, 11, 1673.
- 306. Ueda, T.; Watanabe, S.-I. Chem. Pharm. Bull. 1985, 33, 3689.
- 307. Bowles, W. A.; Robins, R. K. J. Am. Chem. Soc. 1964, 86, 1252.
- 308. Schmidt, R. R.; Wagner, A. Tetrahedron Lett. 1983, 24, 4661.
- 309. Bessodes, M.; Egron, M.-J.; Filippi, J.; Antonakis, K. J. Chem. Soc., Perkin Trans. 1 1990, 3035.
- 310. Pedersen, H.; Pedersen, E. B.; Nielsen, C. M. Heterocycles 1992, **34**, 265.
- 311. Hansen, H. B.; Pedersen, E. B.; Vestergaard, B. F. Arch. Pharm. (Weinheim) 1992, **325**, 491.
- 312. Sharma, A. P.; Ollapally, A. P.; Jones, W.; Lemon, T. Nucleosides & Nucleotides 1992, **11**, 1009.
- 312a. Okabe, M.; Sun, R.-C. Tetrahedron Lett. 1989, **30**, 2203.
- 312b. Doboszewski, B.; Blaton, N.; Herdewijn, P. Tetrahedron Lett. 1995, **36**, 1321.
 - 313. Marumoto, R.; Honjo, M. Chem. Pharm. Bull. 1974, 22, 128.
 - 314. Starrett, J. E. Jr.; Tortolani, D. R.; Baker, D. C.; Omar, M. T.; Hebbler, A. K.; Wos, J. A.; Martin, J. C.; Mansuri, M. M. Nucleosides & Nucleotides 1990, 9, 885.

- 315. Huang, H.; Chu, C. K. Synth. Commun. 1990, 20, 1039.
- 316. Shiragami, H.; Uchida, Y.; Izawa, K. EP 0519464, 1992 [Chem. Abstr. 1993, **119**, 9106x].
- 317. Talekar, R. R.; Coe, P. L.; Walker, R. T. Synthesis 1993, 303.
- 318. Honjo, M.; Marumoto, R.; Kobayashi, K., JP 70039705, 1970 [Chem. Abstr. 1970, 75, 62483].
- Ozaki, S.; Katakami, T.; Saneyoshi, M. Bull. Chem. Soc. Jpn. 1977, 50, 2197.
- 320. Adachi, T.; Iwasaki, T.; Inoue, I.; Miyoshi, M. J. Org. Chem. 1979, **44**, 1404.
- 321. Johansen, O.; Holan, G.; Marcuccio, S. M.; Mau, A. W.-H. Aust. J. Chem. 1991, **44**, 37.
- 321a. Park, M.; Rizzo, C. J. J. Org. Chem. 1996, 61, 6092.
 - 322. Markiewicz, W. T.; Wiewiorowski, M. Nucleic Acids Res., Spec. Publ. 4 1978, 185.
 - 323. Markiewicz, W. T. J. Chem. Res. (S) 1979, 1, 24.
 - 324. Robins, M. J.; Wilson, J. S. J. Am. Chem. Soc. 1981, 103, 932.
- 324a. Lessor, R. A.; Leonard, N. J. J. Org. Chem. 1981, 46, 4300.
- 325. Kawasaki, A. M.; Wotring, L. L.; Townsend, L. B. J. Med. Chem. 1990, 33, 3170.
- 326. De Mesmaeker, A.; Lebreton, J.; Hoffmann, P.; Freier, S. M. Synlett 1993, 677.
- 327. De Clercq, E.; Inoue, I.; Kondo, K. EP 381335, 1990 [Chem. Abstr. 1991, **114**, 122980n].
- 328. Ishido, Y.; Nakazaki, N.; Sakairi, N. J. Chem. Soc., Perkin Trans. 1 1979, 2088.
- 329. Ishido, Y.; Sakairi, N.; Okazaki, K.; Nakazaki, N. J. Chem. Soc., Perkin Trans. 1 1980, 563.
- 330. Josan, J. S.; Eastwood, F. W. Aust. J. Chem. 1968, **21**, 2013.
- 330a. Eastwood, F. W.; Harrington, K. J.; Josan, J. S.; Pura, J. L. Tetrahedron Lett. 1970, 5223.
- 331. Hanessian, S.; Bargiotti, A.; LaRue, M. Tetrahedron Lett. 1978, 737.
- 332. Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. Tetrahedron Lett. 1991, **32**, 2569.
- 333. Greenberg, S.; Moffatt, J. G. J. Am. Chem. Soc. 1973, 95, 4016.
- 334. Russell, A. F.; Greenberg, S.; Moffatt, J. G. J. Am. Chem. Soc. 1973, 95, 4025.
- 335. Robins, M. J.; Hansske, F.; Low, N. H.; Park, J. I. Tetrahedron Lett. 1984, **25**, 367.

- 335a. Manchand, P. S.; Brelica, P. S.; Holman, M. J.; Huang, T. N.; Maehr, H.; Tam, S. Y. K.; Yang, R. T. J. Org. Chem. 1992, **57**, 3473.
- 335b. Chen, B.-C.; Quinlan, S. L.; Reid, J. G.; Spector, R. H. Tetrahedron Lett. 1998, **39**, 729.
 - 336. Drugs of the Future 1990, 15, 569.
 - 337. Ikehara, M.; Maruyama, T.; Miki, H. J. Carbohydr., Nucleosides, Nucleotides 1977, **4**, 409.
 - 338. Fox, J. J. Pure Appl. Chem. 1969, 18, 223.
 - 339. Robins, M. J.; Hawrelak, S. D.; Hernández, A. E.; Wnuk, S. F. Nucleosides & Nucleotides 1992, 11, 821.
- 339a. Binkley, R. W. J. Org. Chem. 1991, **56**, 3892.
- 339b. Krolikiewicz, K.; Vorbrüggen, H. Nucleosides & Nucleotides 1994, 13, 673.
- 339c. Bennua-Skalmowski, B.; Vorbrüggen, H. Tetrahedron Lett. 1995, 36, 2611.
- 340. Seela, F.; Winter, H. Liebigs Ann. Chem. 1991, 105.
- 341. Glaudemans, C. P. J.; Fletcher, Jr.; H. G. J. Org. Chem. 1963, **28**, 3004.
- 342. Keller, F.; Botvinick, I. J.; Bunker, J. E. J. Org. Chem. 1967, 32, 1644.
- 343. Montgomery, J. A.; Hewson, K. J. Med. Chem. 1969, 12, 498.
- 344. Montgomery, J. A.; Clayton, S. D.; Shortnacy, A. T. J. Heterocycl. Chem. 1979, **16**, 157.
- 345. Montgomery, J. A.; Clayton, S. D.; Shortnacy, A. T. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley-Interscience: New York; 1986, Vol.3; p. 156.
- 346. Markovac, A.; LaMontagne, M. P. EP 461407, 1991 [Chem. Abstr. 1992, **116**, 194798y].
- 347. Blumbergs, P.; Khan, M. S.; Kalamas, R. L. WO 9108215, 1991 [Chem. Abstr. 1991, **115**, 115026y].
- 348. Seela, F.; Winkeler, H.-D. Liebigs Ann. Chem. 1982, 1634.
- 349. Bourgeois, W; Seela, F. J. Chem. Soc., Perkin Trans. 1 1991, 279.
- 350. Swayze, E. E.; Drach, J. C.; Wotring, L. L; Townsend, L. B. J. Med. Chem. 1997, **40**, 771.
- 351. Mackenzie, G.; Shaw, G. J. Chem. Soc., Chem. Commun. 1978, 882.
- 352. Kadir, K.; Mackenzie, G.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1980, 2304.
- 353. Mackenzie, G.; Shaw, G. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley-Interscience: New York; 1986, Vol.3; p. 117.
- 354. Cook, P. D. EP 043722, 1982 [Chem. Abstr. 1982, 96, 181576t].

- 355. Meade, E. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1992, 35, 526.
- 356. Shen, T. Y.; Lewis, H. M.; Ruyle, W. V. J. Org. Chem. 1965, 30, 835.
- 357. Keller, F.; Tyrrill, A. R. J. Org. Chem. 1966, 31, 1289.
- 358. Kulikowski, T.; Zawadzki, Z.; Shugar, D.; Descamps, J.; De Clercq, E. J. Med. Chem. 1979, 22, 647.
- 359. Kulikowski, T.; Zawadzki, Z.; De Clercq, E.; Shugar, D. Acta Biochim. Pol. 1984, **31**, 341 [Chem. Abstr. 1985, **103**, 6656k].
- 360. Griengl, H.; Wanek, E.; Schwarz, W.; Streicher, W.; Rosenwirth, B.; De Clercq, E. J. Med. Chem. 1987, **30**, 1199.
- 361. Sudhakar Rao, T.; Revankar, G. R.; Vinayak, R. S.; Robins, R. K. J. Heterocycl. Chem. 1991, **28**, 1779.
- 362. Sudhakar Rao, T.; Revankar, G. R.; Vinayak, R. S.; Robins, R. K. J. Heterocycl. Chem. 1992, 29, 343.
- 363. Kulikowski, T.; Zawadski, Z.; Shugar, D. Nucleic Acids Res., Symp. Ser. 9 1981, p. 103.
- Harnden, M. R.; Jarvest, R. L. Nucleosides & Nucleotides 1985, 4, 465.
- 365. Adams, A. D.; Petrie, C. R.; Meyer, Jr., R. B. Nucleic Acids Res. 1991, 19, 3647.
- 366. Jørgensen, P. T.; El-Barbary, A. A.; Pedersen, E. B. Liebigs Ann. Chem. 1993, 1.
- 367. Sharma, A. P.; Blair, M.; Ollapally, A. P. Nucleosides & Nucleotides 1990, 9, 713.
- 368. Ozola, V.; Ramzaeva, N.; Maurinsh, Y.; Lidaks, M. Nucleosides & Nucleotides 1993, **12**, 479.
- 369. Kumar, P.; Wiebe, L. I. Nucleosides & Nucleotides 1990, 9, 861.
- 370. Jørgensen, P. T.; Pedersen, E. B.; Nielsen, C. Synthesis 1992, 1299.
- 370a. Sofan, M. A.; Abdel-Megied, A. E.-S.; Pedersen, M. B.; Pedersen, E. B.; Nielsen, C. Synthesis 1994, 516.
- 370b. Janardhanam, S.; Nambiar, K. P. Tetrahedron Lett. 1994, 35, 3657.
- 370c. Gallo, M. A.; Espinosa, A.; Campos, J.; Entrena, A., Domínguez, J. F.; Camacho, E., Pineda, M. J.; Gómez, J. A. Synlett 1993, 389.
- 370d. El-Barbary, A. A.; El-Brollosy, N.; Abdel-Bary, H.; Pedersen, E. B.; Stein, S.; Nielsen, C. Liebigs Ann. Chem. 1995, 1371.
- 370e. El-Barbary, A. A.; El-Brollosy, N. R.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1995, **126**, 593.
- 370f. Cristalli, G.; Volpini, R.; Vittori, S.; Camaioni, E.; Rafaiani, G.; Potenza, S.; Vita, A. Nucleosides & Nucleotides 1996, **15**, 1567.

- 371. Chattopadhyaya, J. B.; Reese, C. B. Nucleic Acids Res., Spec. Publ. 4 1978, 67.
- 372. Sanchez, R. A.; Orgel, L. E. J. Mol. Biol. 1970, 47, 531.
- 373. Gish, D. T.; Neil, G. L.; Wechter, W. J. J. Med. Chem. 1971, 14, 882.
- 374. Tolman, R. L.; Robins, R. K. J. Med. Chem. 1971, 14, 1112.
- 375. Holý, A. Tetrahedron Lett. 1971, 189.
- 376. Holý, A. Collect. Czech. Chem. Commun. 1973, 38, 428.
- 377. Holý, A. Collect. Czech. Chem. Commun. 1972, 37, 4072.
- 378. Holý, A. Tetrahedron Lett. 1973, 1147.
- 379. Holý, A. Collect. Czech. Chem. Commun. 1973, 38, 3912.
- 380. Holý, A. Nucleic Acids Res. 1974, **1**, 289.
- 381. Yoshimura, Y.; Ueda, T.; Matsuda, A. Tetrahedron Lett. 1991, **32**, 4549.
- 382. Averett, D. R.; Koszalka, G. W.; Fyfe, J. A.; Roberts, G. B.; Purifoy, D. J. M.; Krenitsky, T. A. Antimicrob. Agents Chemother. 1991, 35, 851.
- 382a. Koszalka, G. W.; Averett, D. R.; Fyfe, J. A.; Roberts, G. B.; Spector, T.; Biron, K.; Krenitsky, T. A. Antimicrob. Agents Chemother. 1991, 35, 1437.
- 383. Watanabe, K. A.; Su, T.-L.; Reichman, U.; Greenberg, N.; Lopez, C.; Fox, J. J. J. Med. Chem. 1984, 27, 91.
- 383a. Smee, D. F.; Chernow, M.; Kraft, M.; Okamoto, P. M.; Prisbe, E. J. Nucleosides & Nucleotides 1988, 7, 155.
- 384. Chu, C. K.; Matulic-Adamic, J.; Huang, J.-T.; Chou, T.-C.; Burchenal, J. H.; Fox, J. J.; Watanabe, K. A. Chem. Pharm. Bull. 1989, 37, 336.
- 385. Howell, H. G.; Brodfuehrer, P. R.; Brundidge, S. P.; Benigni, D. A.; Sapino, Jr., C. J. Org. Chem. 1988, **53**, 85.
- 386. Martin, J. A.; Bushnell, D. J.; Duncan, I. B.; Dunsdon, S. J.; Hall, M. J.;
 Machin, P. J.; Merrett, J. H.; Parkes, K. E. B.; Roberts, N. A.; Thomas,
 G. J.; Galpin, S. A.; Kinchington, D. J. Med. Chem. 1990, **33**, 2137.
- 387. Tann, C. H.; Brodfuehrer, P. R.; Brundidge, S. P.; Sapino, Jr., C.; Howell, H. G. J. Org. Chem. 1985, **50**, 3644.
- 388. Driscoll, J. S.; Marquez, V. E.; Plowman, J.; Liu, P. S.; Kelley, J. A.; Barchi, Jr., J. J. J. Med. Chem. 1991, **34**, 3280.
- 389. Siddiqui, M. A.; Driscoll, J. S.; Marquez, V. E.; Roth, J. S.; Shirasaka, T.; Mitsuya, H.; Barchi, Jr., J. J.; Kelley, J. A. J. Med. Chem. 1992, **35**, 2195.
- 390. Wysocki, Jr., R. J.; Siddiqui, M. A.; Barchi, Jr., J. J.; Driscoll, J. S.; Marquez, V. E. Synthesis 1991, 1005.
- 391. Marquez, V. E.; Tseng, C. K.-H.; Mitsuya, H.; Aoki, S.; Kelley, J. A.; Ford, Jr., H.; Roth, J. S.; Broder, S.; Johns, D. G.; Driscoll, J. S. J.

Med. Chem. 1990, **33**, 978.

- 392. Araki, K.; Yun, W. Q.; O'Toole, J.; Toscano, P. J.; Welch, J. T. Carbohydr. Res. 1993, **249**, 139.
- 393. Vemishetti, P.; Howell, H. G.; Walker, D. G.; Brodfuehrer, P. R.; Shih, K. M. EP 428109, 1991 [Chem. Abstr. 1991, 115, 92840t].
- 394. Yasumoto, M.; Marunaka, T.; Hashimoto, S.; Harima, K.; Suzue, T. JP 76146482, 1976 [Chem. Abstr. 1977, 87, 53355x].
- 395. Vorbrüggen, H.; Krolikiewicz, K. unpublished results.
- 396. Baud, M. V.; Chavis, C.; Lucas, M.; Imbach, J.-L. Tetrahedron Lett. 1990, **31**, 4437.
- 397. Nechab, M.; Chavis, C.; Lucas, M.; Imbach, J.-L. Synth. Commun. 1992, 22, 1115.
- 398. Azymah, M.; Chavis, C.; Fruchier, A.; Lucas, M.; Imbach, J.-L. Nucleosides & Nucleotides 1992, 11, 1607.
- 399. Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Nitta, I.; Baba, M.; Shigeta, S.; Walker, R. T.; De Clercq, E.; Miyasaka, T. J. Med. Chem. 1992, **35**, 4713.
- 400. Kim, Y. H.; Kim, J. Y.; Lee, C. H. Chem. Lett. 1988, 1045
- 401. Lee, C. H.; Kim, J. Y.; Kim, W. J.; Kim, Y. H. Heterocycles 1990, **31**, 211.
- 402. Zuurmond, H. M.; van der Klein, P. A. M.; Veeneman, G. H.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1990, **109**, 437.
- 403. Sugimura, H. JP 2237986, 1990 [Chem. Abstr. 1991, 114, 122986u].
- 404. Sugimura, H.; Osumi, K.; Yamazaki, T.; Yamaya, T. Tetrahedron Lett. 1991, **32**, 1813.
- 404a. Sugimura, H.; Osumi, K.; Kodaka, Y.; Sujino, K. J. Org. Chem. 1994, **59**, 7653.
- 405. Sugimura, H.; Sujino, K.; Osumi, K. Tetrahedron Lett. 1992, **33**, 2515.
- 406. Sujino, K.; Sugimura, H. Synlett 1992, 553.
- 407. Sugimura, H.; Muramoto, I.; Nakamura, T.; Osumi, K. Chem. Lett. 1993, 169.
- 408. Knapp, S.; Shieh, W.-C. Tetrahedron Lett. 1991, 32, 3627.
- 408a. Knapp, S.; Shieh, W.-C.; Jaramillo, C.; Trilles, R. V.; Nandan, S. R. J. Org. Chem. 1994, **59**, 946.
- 409. Garner, P.; Yoo, J. U.; Sarabu, R. Tetrahedron 1992, 48, 4259.
- 410. Knapp, S.; Nandan, S. R. J. Org. Chem. 1994, 59, 281.
- 410a. Sujino, K.; Yoshida, T.; Sugimura, H. Tetrahedron Lett. 1996, **37**, 6133.
- 411. Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc.

1989, **111**, 6881.

- 412. Chanteloup, L.; Beau, J.-M. Tetrahedron Lett. 1992, **33**, 5347.
- 413. Trost, B. M.; Nübling, C. Carbohydr. Res. 1990, 202, 1.
- 414. O'Neil, I. A.; Hamilton, K. M. Synlett 1992, 791.
- 414a. Nishizono, N.; Koike, N.; Yamagata, Y.; Fujii, S.; Matsuda, A. Tetrahedron Lett. 1996, **37**, 7569.
- 414b. Yoshimura, Y.; Watanabe, M.; Satoh, H.; Ashida, N.; Ijichi, K.; Sakata, S.; Machida, H.; Matsuda, A. J. Med. Chem. 1997, **40**, 2177.
- 414c. Yoshimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.;
 Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. J. Org. Chem. 1997, 62, 3140.
- 414d. Leydier, C.; Bellon, L.; Barascut, J.-L.; Deydier, J.; Maury, G.; Pelicano, H.; El Alaoui, M. A.; Imbach, J. L. Nucleosides & Nucleotides 1994, **13**, 2035.
- 414e. Jeong, L. S.; Nicklaus, M. C.; George, C.; Marquez, V. E. Tetrahedron Lett. 1994, **35**, 7569.
- 414f. Mann, J.; Tench, A. J.; Weymouth-Wilson, A. C.; Shaw-Ponter, S.; Young, R. J. J. Chem. Soc., Perkin Trans. 1 1995, 677.
- 414g. Secrist, J. A.; Parker, W. B.; Tiwari, K. N.; Messini, L.; Shaddix, S. C. R.; Rose, L. M.; Bennett, Jr., L. L.; Montgomery, J. A. Nucleosides & Nucleotides 1995, 14, 675.
- 414h. Leydier, C.; Bellon, L.; Barascut, J.-L.; Imbach, J.-L. Nucleosides & Nucleotides 1995, **14**, 1027.
- 414i. Jandu, K. S.; Selwood, D. L. J. Org. Chem. 1995, 60, 5170.
- 414j. Young, R. J.; Shaw-Ponter, S.; Thomson, J. B.; Miller, J. A.; Cumming, J. G.; Pugh, A. W.; Rider, P. Bioorg. Med. Chem. Lett. 1995, **5**, 2599.
- 414k. Hancox, E. L.; Walker, R. T. Nucleosides & Nucleotides 1996, 15, 135.
- 414I. Shaw-Ponter, S.; Mills, G.; Robertson, M.; Bostwick, R. D.; Hardy, G. W.; Young, R. J. Tetrahedron Lett. 1996, **37**, 1867.
- 414m. Wnuk, S. F. Tetrahedron 1993, 49, 9877.
- 414n. Walker, R. T. Royal Soc. Chem., Special Publication 1997, 198, 203.
- 415. Ratcliffe, A. J.; Mootoo, D. R.; Andrews, C. W.; Fraser-Reid, B. J. Am. Chem. Soc. 1989, **111**, 7661.
- 416. Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, **31**, 4313.
- 417. Llera, J. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 1990, **55**, 2997.
- 418. Fraser-Reid, B.; Wu, Z.; Udodong, U. E.; Ottosson, H. J. Org. Chem. 1990, **55**, 6068.
- 419. Lopez, J. C.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1991,

159.

- 420. Ratcliffe, A. J.; Konradsson, P.; Fraser-Reid, B. Carbohydr. Res. 1991, **216**, 323.
- 421. Chapeau, M.-C.; Marnett, L. J. J. Org. Chem. 1993, 58, 7258.
- 421a. Wang, J.; Wurster, J. A.; Wilson, L. J.; Liotta, D. Tetrahedron Lett. 1993, **34**, 4881.
- 421b. Kawakami, H.; Ebata, T.; Koseki, K.; Okano, K.; Matsumoto, K.; Matsushita, H. Heterocycles 1993, **36**, 665.
- 421c. El-Laghdach, A.; Diaz, Y.; Castillón, S. Tetrahedron Lett. 1993, **34**, 2821.
- 422. Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.; Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, **112**, 8563.
- 423. Kim, C. U.; Misco, P. F. Tetrahedron Lett. 1992, 33, 5733.
- 423a. Diaz, Y.; El-Laghdach, A.; Matheu, M. I.; Castillon, S. J. Org. Chem. 1997, **62**, 1501.
- 423b. Diaz, Y.; El-Laghdach, A.; Castillon, S. Tetrahedron 1997, 53, 10921.
- 424. Kawada, M.; Matsumoto, K.; Tsurushima, M. EP 193903, 1985 [Chem. Abstr. 1986, **105**, 209351w].
- 424a. Furukawa, Y. EP 136693, 1984 [Chem. Abstr. 1985, 103, 71623m].
- 425. Nová ek, A.; Hesoun, D.; Gut, J. Collect. Czech. Chem. Commun. 1965, **30**, 1890.
- 425a. Cruickshank, K. A.; Jiricny, J.; Reese, C. B. Tetrahedron 1994, **50**, 3603.
- 425b. Botta, M.; Saladino, R.; Gentile, G.; Summa, V.; Nicoletti, R.; Verri, A.; Focher, F.; Spadari, S. Tetrahedron 1994, **50**, 3603.
- 425c. Podzigun, G. I.; Petrova, V. V.; Reznik, V. S.; Shagidullin, R. R.;
 Awakumova, L. V. Izv. Akad. Nauk, Ser. Khim. 1997, 2, 397 [Chem. Abstr. 1997, 127, 161781m].
- 426. Ogawa, T.; Matsui, M. J. Organometal. Chem. 1978, 145, C37.
- 427. Keilen, G.; Benneche, T.; Undheim, K. Acta Chem. Scand., Ser. B 1987, **41**, 577.
- 428. Mukaiyama, T.; Hashimoto, Y.; Hayashi, Y.; Shoda, S. Chem. Lett. 1984, 557
- 429. Mukaiyama, T.; Shoda, S.; Nakatsuka, T.; Narasaka, K. Chem. Lett. 1978, 605.
- 430. Szarek, W. A.; Depew, C.; Jarrell, H. C.; Jones, J. K. N. J. Chem. Soc., Chem. Commun. 1975, 648
- 431. Hertel, L. W.; Grossman, C. S.; Kroin, J. S.; Mineishi, S.; Chubb, S.; Nowak, B.; Plunkett, W. Nucleosides & Nucleotides 1989, **8**, 951.
- 432. Bouali, A., Ewing, D. F.; Mackenzie, G. Nucleosides & Nucleotides

1994, **13**, 491.

- 432a. Falahatpisheh, N.; Sulikowski, G. A. Synlett 1994, 672.
- 432b. Xiang, Y.; Kotra, L. P.; Chu, C. K.; Schinazi, R. F. Bioorg. Med. Chem. Lett. 1995, **5**, 743
- 432c. Andersen, M. W.; Daluge, S. M.; Kerremans, L.; Herdewijn, P. Tetrahedron Lett. 1996, **37**, 8147.
- 432d. Kotra, L. P.; Xiang, Y.; Newton, M. G.; Schinazi, R. F.; Cheng, Y. C.; Chu, C. K. J. Med. Chem. 1997, **40**, 3635.
- 432e. Zacharie, B.; Gagnon, L.; Attardo, G.; Connolly, T. P.; St-Denis, Y.; Penney, C. L. J. Med. Chem. 1997, **40**, 2883.
- 432f. Ohkubo, M.; Nishimura, T.; Jona, H.; Honma, T.; Ito, S.; Morishima, H. Tetrahedron 1997, **53**, 5937.
- 432g. Hendrix, C.; Rosemeyer, H.; Verheggen, I.; Seela, F.; Van Aerschot, A.; Herdewijn, P. Chem. Eur. J. 1997, **3**, 110.
- 432h. Hossain, N.; Rozenski, J.; De Clercq, E.; Herdewijn, P. J. Org. Chem. 1997, **62**, 2442.
- 433. Mukaiyama, T.; Hayashi, Y.; Hashimoto, Y. Chem. Lett. 1985, 1087.
- 434. Koch, A.; Lamberth, C.; Wetterich, F.; Giese, B. J. Org. Chem. 1993, **58**, 1083.
- 435. Fischer, E.; Delbrück, K. Chem. Ber. 1909, 2776.
- 436. Schramm, G.; Grötsch, H.; Pollmann, W. Angew. Chem., Int. Ed. Engl. 1962, **1**, 1.
- 437. Onodera, K.; Hirano, S.; Kashimura, N.; Masuda, F.; Yajima, T.; Miyazaki, N. J. Org. Chem. 1966, **31**, 1291
- 438. Peetersen, H.; Pedersen, E. B; Nielsen, C. M. Chem. Scr. 1989, **29**, 375.
- 439. Hjuler-Nielsen, H. P.; Pedersen, H.; Hansen, H. B.; Pedersen, E. B.; Nielson, C. J. Heterocycl. Chem. 1992, **29**, 511.
- 440. Bolitt, V.; Chaguir, B.; Sinou, D. Tetrahedron Lett. 1992, 33, 2481.
- 440a. Trost, B. M.; Shi, Z. J. Am. Chem. Soc. 1996, 118, 3037
- 441. Cusack, N. J.; Hildick, B. J.; Robinson, D. H.; Rugg, P. W.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1973, 1720.
- 442. Takeuchi, T.; Umezawa, S.; Tsuchiya, T.; Takahashi, Y. WO 9310137, 1993 [Chem. Abstr. 1993, **119**, 139705c].
- 443. Agathocleous, D. C.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1991, 2317.
- 444. Nair, V.; Purdy, D. F. Heterocycles 1993, 36, 421.
- 445. Jung, M. E.; Trifunovich, I. D. Tetrahedron Lett. 1992, 33, 2921.
- 446. Fuentes, J.; Moreda, W.; Ortiz, C.; Robina, I.; Welsh, C. Tetrahedron 1992, **48**, 6413.

- 447. Yokoyama, M.; Kumata, K.; Yamada, N.; Noro, H.; Sudo, Y. J. Chem. Soc., Perkin Trans. 1 1988, 2309.
- 448. Yokoyama, M.; Ikuma, T.; Sugasawa, S.; Togo, H. Bull. Chem. Soc. Jpn. 1991, **64**, 2306.
- 449. Yokoyama, M.; Ikuma, T.; Obara, N.; Togo, H. J. Chem. Soc., Perkin Trans. 1 1990, 3243.
- 450. Acevedo, O. L.; Townsend, L. B. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley-Interscience: New York; 1986, **Vol.3**; p. 119.
- 451. Vasella, A. Helv. Chim. Acta 1977, 60, 426.
- 452. Vasella, A. Helv. Chim. Acta 1977, 60, 1273.
- 453. Nogueras, M.; Melguizo, M.; Quijano, M. L.; Sánchez, A. J. Heterocycl. Chem. 1991, **28**, 1417.
- 454. Melguizo, M.; Nogueras, M.; Sánchez, A. Synthesis 1992, 491.
- 455. Moss, R. J.; Petrie, C. R.; Meyer, Jr., R. B.; Nord, L. D.; Willis, R. C.; Smith, R. A.; Larson, S. B.; Kini, G. D.; Robins, R. K. J. Med. Chem. 1988, **31**, 786.
- 455a. Grouiller, A.; Mackenzie, G.; Najib, B.; Shaw, G.; Ewing, D. J. Chem. Soc., Chem. Commun. 1988, 671.
 - 456. Geen, G. R.; Kincey, P. M.; Choudary, B. M. Tetrahedron Lett. 1992, **33**, 4609.
- 457. Baker, B. R.; Tanna, P. M. J. Org. Chem. 1965, **30**, 2857.
- 458. Lira, E. P.; Huffman, C. W. J. Org. Chem. 1966, 31, 2188.
- 459. Yakout, E.-S. M. A.; Pedersen, E. B. Chem. Scr. 1989, 29, 185.
- 460. Prevost, N.; Rouessac, F. Synth. Commun. 1997, 227, 2325.
- 460a. Prevost, N.; Rouessac, F. Tetrahedron Lett. 1997, **38**, 4215.
- 461. Hanrahan, J. R.; Hutchinson, D. W. J. Biotechnol. 1992, 23, 193.
- 462. Krenitsky, T. A.; Rideout, J. L.; Chao, E. Y.; Koszalka, G. W.; Gurney, F.; Crouch, R. C.; Cohn, N. K.; Wolberg, G.; Vinegar, R. J. Med. Chem. 1986, 29, 138.
- 463. Morisawa, H.; Utagawa. T.; Miyoshi, T.; Kashima, N.; Nakamatsu, T.; Yamanaka, S.; Yamazaki, A. Nucleic Acids Res., Symp. Ser. 6 1979, s25.
- 464. Utagawa, T.; Morisawa, H.; Miyoshi, T.; Yoshinaga, F.; Yamazaki, A.; Mitsugi, K. FEBS Lett. 1980, **109**, 261.
- 465. Morisawa, H.; Utagawa, T.; Miyoshi, T.; Yoshinaga, F.; Yamazaki, A.; Mitsugi, K. Tetrahedron Lett. 1980, **21**, 479.
- 466. Krenitsky, T. A.; Koszalka, G. W.; Tuttle, J. V.; Rideout, J. L.; Elion, G. B. Carbohydr. Res. 1981, 97, 139.
- 467. Krenitsky, T. A.; Koszalka, G. W.; Jones, L. A.; Averett, D. R.;

Moorman, A. R. EP 294114, 1988 [Chem. Abstr. 1989, 111, 7760s].

- 468. Krenitsky, T. A.; Koszalka, G. W.; Tuttle, J. V. Biochemistry 1981, **20**, 3615.
- 469. Barbas III, C. F.; Wong, C.-H. Bioorg. Chem. 1991, 19, 261
- 470. Tisdale, S. M.; Tuttle, J. V.; Slater, M. J.; Daluge, S. M.; Miller, W. H.; Krenitsky, T. A.; Koszalka, G. W. EP 417999, 1991 [Chem. Abstr. 1991, **115**, 230514t].
- 471. Tuttle, J. V.; Tisdale, M.; Krenitsky, T. A. J. Med. Chem. 1993, 36, 119.
- 472. Tuttle, J. V.; Krenitsky, T. A. EP 285432, 1988 [Chem. Abstr. 1989, **111**, 55835s].
- 473. Burns, Ch. L.; Daluge, S. M.; Koszalka, G. W.; Krenitsky, T. A.; Van Tuttle, J. EP 317128, 1989 [Chem. Abstr. 1990, **112**, 151842h].
- 474. Morisawa, H.; Utagawa, T.; Nakamatsu, T.; Yamanaka, S.; Yamazaki, A. Nucleic Acids Res., Symp. Ser. 8 1980, S11.
- 475. Morisawa, H.; Utagawa, T.; Yamanaka, S.; Yamazaki, A. Chem. Pharm. Bull. 1981, **29**, 3191.
- 476. Utagawa, T.; Morisawa, H.; Yamanaka, S.; Yamazaki, A.; Yoshinaga, F.; Hirose, Y. Agric. Biol. Chem. 1985, **49**, 3239.
- 477. Utagawa, T.; Morisawa, H.; Yamanaka, S.; Yamazaki, A.; Hirose, Y. Agric. Biol. Chem. 1986, **50**, 121.
- 478. Hennen, W. J.; Wong, C.-H. J. Org. Chem. 1989, 54, 4692.
- 479. Stout, M. G.; Hoard, D. E.; Holman, M. J.; Wu, E. S.; Siegel, J. M. Methods Carbohydr. Chem. 1976, **7**, 19.
- 480. Huang, M.-C.; Hatfield, K.; Roetker, A. W.; Montgomery, J. A.; Blakley, R. L. Biochem. Pharmacol. 1981, **30**, 2663.
- 481. Holguin, J.; Cardinaud, R.; Salemink, C. A. Eur. J. Biochem. 1975, **54**, 515.
- 482. Betbeder, D.; Hutchinson, D. W.; Richards, A. O'L. Nucleic Acids Res. 1989, **17**, 4217.
- 483. Betbeder, D.; Hutchinson, D. W. Nucleosides & Nucleotides 1990, 9, 569.
- 484. Fischer, W.; Kaun, E.; Genz, U. DE 3840160, 1989 [Chem. Abstr. 1990, **114**, 22457d].
- 485. Fischer, W.; Kaun, E.; Genz, U. WO 9006312, 1989 [Chem. Abstr. 1990, **114**, 99958a].
- 486. Burns, C. L.; St. Clair, M. H.; Frick, L. W.; Spector, T.; Averett, D. R.; English, M. L.; Holmes, T. J.; Krenitsky, T. A.; Koszalka, G. W. J. Med. Chem. 1993, **36**, 378.
- 487. Vasiloiu, R. DE 4020529, 1990 [Chem. Abstr. 1991, 115, 227097d].
- 488. Kojima, E.; Yoshioka, H.; Tomikanehara, H.; Murakami, K. JP

2222695, 1989 [Chem. Abstr. 1991, 114, 80106z].

- 489. Murakami, K.; Shirasaka, T.; Yoshioka, H.; Kojima, E.; Aoki, S.; Ford, Jr., H.; Driscoll, J. S.; Kelley, J. A.; Mitsuya, H. J. Med. Chem. 1991, 34, 1606.
- 489a. Kojima, E.; Yoshioka, H.; Fukinbara, H.; Murakami, K. GB 2228479, 1989 [Chem. Abstr. 1991, **114**, 102707a].
- 490. Shirae, H.; Yokozeki, K. Agric. Biol. Chem. 1991, 55, 609.
- 491. Ajinomoto Inc. Drugs of the Future 1990, 15, 399.
- 492. Carson, D. A.; Wasson, D. B. Biochem. Biophys. Res. Commun. 1988, **155**, 829.
- 492a. Votruba, I.; Holý, A.; Dvorakova, H.; Günter, J.; Hockova, D.; Hrebabecky, H.; Cihlar, T.; Masojidkova, M. Collect. Czech. Chem. Commun. 1994, **59**, 2303.
- 493. Drueckhammer, D. G.; Hennen, W. J.; Pederson, R. L.; Barbas III, C. F.; Gautheron, C. M.; Krach, T.; Wong, C.-H. Synthesis 1991, 499.
- 494. Rolland, V.; Kotera, M.; Lhomme, J. Synth. Commun. 1997, 27, 3505.
- 494a. Kuimelis, R. G.; Hope, H.; Nambiar, K. P. Nucleosides & Nucleotides 1993, **12**, 737.
 - 495. Gold, A.; Sangaiah, R. Nucleosides & Nucleotides 1990, 9, 907.
 - 496. Martin, O. R. Tetrahedron Lett. 1985, 26, 2055.
- 496a. Martin, O. R.; Rao, S. P.; El-Shenawy, H. A.; Kurz, K. G.; Cutler, A. B. J. Org. Chem. 1988, **53**, 3287.
- 497. Brown, D. M.; Todd, A.; Varadarajan, S. J. Chem. Soc. 1956, 2384.
- 498. Kohn, P.; Samaritano, R. H.; Lerner, L. M. In Synthetic Procedures in Nucleic Acid Chemistry; Zorbach, W. W., Tipson, R. S., Eds.; Wiley-Interscience: New York, 1968, Vol.1; p. 117.
- 499. Hoffer, M. US 3868373, 1975 [Chem. Abstr. 1975, 82, 171366w].
- 500. Quittmann, W. EP 411467, 1991 [Chem. Abstr. 1991, 114, 247058z].
- 501. Langer, S. H.; Connell, S.; Wender, I. J. Org. Chem. 1958, 23, 50.
- 502. Wyss, P. C.; Schönholzer, P.; Arnold, W. Helv. Chim. Acta 1980, **63**, 1353.
- 503. Kristinsson, H.; Nebel, K.; O'Sullivan, A. C.; Struber, F.; Winkler, T.; Yamaguchi, Y. Tetrahedron 1994, **50**, 6825.
- 504. Hawkins, L. D.; Hanvey, J. C.; Boyd, Jr., F. L.; Baker, D. C.; Showalter, H. D. H. Nucleosides & Nucleotides 1983, **2**, 479.
- 505. Wright, G. E.; Dudycz, L. W. J. Med. Chem. 1984, 27, 175.
- 506. Jarvi, E. T.; Sunkara, P. S.; Bowlin, T. L. Nucleosides & Nucleotides 1989, **8**, 1111.
- 507. Bhadti, V. S.; Bhan, A.; Hosmane, R. S.; Hulce, M. Nucleosides & Nucleotides 1992, **11**, 1137.

- 507a. Cristalli, G.; Volpini, R.; Vittori, S.; Camaioni, E.; Rafaiani, G.; Potenza, S.; Vita, A. Nucleosides & Nucleotides 1996, **15**, 1567.
- 508. Musicki, B.; Widlanski, T. S. Tetrahedron Lett. 1991, 32, 1267.
- 509. O'Hara Dempcy, R.; Skibo, E. B. J. Org. Chem. 1991, 56, 776.
- 509a. Vorbrüggen, H. Acta Biochem. Pol. 1996, **43**, 25 [Chem. Abstr. 1996, **125**, 168452x].
 - 510. Lichtenthaler, F. W.; Cuny, E. Chem. Ber. 1981, 114, 1610.
- 511. Liu, P. S.; Marquez, V. E.; Driscoll, J. S.; Fuller, R. W. J. Med. Chem. 1981, **24**, 662
- 512. Skulnick, H. I.; Wierenga, W. J. Carbohydr., Nucleosides, Nucleotides 1979, **6**, 262.
- 513. Demuth, M.; Mikhail, G. Synthesis 1982, 827.
- 514. Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, **22**, 3455.
- 514a. Boudjouk, P.; So, J-H. Inorg. Syn. 1992, 29, 108
- 514b. Saneyoshi, M.; Inomata, M.; Fukuoka, F. Chem. Pharm. Bull. 1978, **26**, 2990.
- 515. Janardhanam, S.; Nambiar, K. P. J. Chem. Soc., Chem. Commun. 1994, 1009.
- 515a. Bednarski, K.; Dixit, D. M.; Mansour, T. S.; Colman, S. G.; Walcott, S. M.; Ashman, C. Bioorg. Med. Chem. Lett. 1995, **5**, 1741.
- 515b. Matulic-Adamic, J.; Haeberli, P.; Usman, N. J. Org. Chem. 1995, **60**, 2563.
- 515c. Austin, R. E.; Cleary, D. G. Nucleosides & Nucleotides 1995, 14, 1803.
- 515d. Kofoed, T.; Ismail, A. E. A. A.; Pedersen, E. B.; Nielsen, C. Bull. Soc. Chim. Fr. 1997, 59.
 - 516. Watanabe, K. A.; Fox, J. J. J. Heterocycl. Chem. 1969, 6, 109.
- 517. Watanabe, K. A.; Kotick, M. P.; Fox, J. J. J. Org. Chem. 1970, 35, 231.
- 518. Leonard, N. J.; Sprecker, M. A.; Morrice, A. G. J. Am. Chem. Soc. 1976, **98**, 3987.
- 519. Cottam, H. B.; Wasson, D. B.; Shih, H. C.; Raychaudhuri, A.; Di Pasquale, G.; Carson, D. A. J. Med. Chem. 1993, **36**, 3424.
- 519a. Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938.
- 520. Wengel, J.; Pedersen, E. B.; Vestergaard, B. F. Synthesis 1992, 319.
- 521. Jähne, G. DE 4020481, 1992 [Chem. Abstr. 1992, 116, 152305e].
- 521a. Schmidt, C. L.; Rusho, W. J.; Townsend, L. B. J. Chem. Soc., Chem. Commun. 1971, 1515.
- 521b. El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1997, 67, 391.
- 521c. El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1997, 68, 1.

- 521d. El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1998, 69, 129.
- 521e. Yoshimura, Y.; Endo, M.; Sakata, S. Tetrahedron Lett. 1999, 40, 1937.
- 522. Rochow, E. G.; Gingold, K. J. Am. Chem. Soc. 1954, 76, 4852.
- 523. Pitt, M. J. Chem. Ind. (London) 1982, **20**, 804.
- 523a. Reichardt, C. Solvent Effect in Organic Chemistry, VCH, Weinheim; 1969.
- 523b. Branalt, J.; Kvarnström, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1996, **61**, 3599.
- 523c. Branalt, J.; Kvarnström, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1996, **61**, 3604.
- 524. Katz, D. J.; Wise, D. S.; Townsend, L. B. J. Heterocycl. Chem. 1983, **20**, 369.
- 525. Patil, V. D.; Wise, D. S.; Townsend, L. B. J. Chem. Soc., Perkin Trans. 1 1980, 1853.
- 526. Bennua, B.; Vorbrüggen, H. unpublished results.
- 527. Nelson, V.; El Khadem, H. Carbohydr. Res. 1983, 124, 161.
- 528. Yasumoto, M.; Yamawaki, I.; Marunaka, T.; Hashimoto, S. J. Med. Chem. 1978, **21**, 738.
- 529. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- 529a. Nelson, T. D.; Crouch, R. D. Synthesis 1996, 1031.
- 530. Lau, J.; Pedersen, E. B.; Wengel, J. Nucleosides & Nucleotides 1989, **8**, 961.
- 531. Walczak, K.; Wengel, J.; Pedersen, E. B. Monatsh. Chem. 1992, **123**, 349.
- 532. Hiebl, J.; Zbiral, E. Nucleosides & Nucleotides 1996, **15**, 1649.
- 533. Depelley, J.; Granet, R.; Kaouadji, M.; Krausz, P.; Piekarski, S. Nucleosides & Nucleotides 1996, **15**, 995.
- 534. Sharma, M.; Alderfer, J. L. Nucleosides & Nucleotides 1983, 2, 89.
- 535. Pathak, V. P. Synth. Commun. 1993, 23, 83.
- 536. Asakura, J. Nucleosides & Nucleotides 1993, **12**, 701.
- 536a. Rassu, G.; Zanardi, F.; Cornia, M.; Casiraghi, G. Nucleosides & Nucleotides 1996, **15**, 1113.
- 536b. Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K. Tetrahedron Lett. 1981, **22**, 3761.
- 536c. Prasad, A. K.; Wengel, J. Nucleosides & Nucleotides 1996, 15, 1347.
- 537. Gosselin, G.; Bergogne, M.-C.; De Rudder, J.; De Clercq, E.; Imbach, J.-L. J. Med. Chem. 1987, **30**, 982.
- 538. Niedballa, U.; Vorbrüggen, H. unpublished results.
- 538a. Ross, B. S.; Springer, R. H.; Vasquez, G.; Andrews, R. S.; Cook, P.

D.; Acevedo, O. L. J. Heterocycl. Chem. 1994, 31, 765.

- 539. Montgomery, J. A.; Shortnacy-Fowler, A. T.; Clayton, S. D.; Riordan, J. M.; Secrist III, J. A. J. Med. Chem. 1992, **35**, 397.
- 540. Bärwolff, D.; Kowollik, G.; Langen, P. Collect. Czech. Chem. Commun. 1974, **39**, 1494.
- 541. Melander, C.; Horne, D. A. J. Org. Chem. 1997, 62, 9295.
- 542. Witkowski, J. T.; Robins, R. K.; Sidwell, R. W.; Simon, L. N. J. Med. Chem. 1972, **15**, 1150.
- 543. Cook, P. D.; Dea, P.; Robins, R. K. J. Heterocycl. Chem. 1978, 15, 1.
- 544. Folkers, G.; Junginger, G.; Müller, C. E.; Schloz, U.; Eger, K. Arch. Pharm. (Weinheim) 1989, **322**, 119.
- 545. Wilson, J. D. US 4921950, 1990 [Chem. Abstr. 1990, 113, 132719c].
- 546. Mitchell, W. L.; Ravenscroft, P.; Hill, M. L.; Knutsen, L. J. S.; Judkins,
 B. D.; Newton, R. W.; Scopes, D. I. C. J. Med. Chem. 1986, 29, 809.
- 547. Bobek, M.; Kavai, I.; De Clercq, E. J. Med. Chem. 1987, 30, 1494.
- 548. Frister, H.; Schlimme, E. Z. Naturforsch. 1987, 42c , 603.
- 549. Gelpi, M. E.; Cadenas, R. A. Adv. Carbohydr. Chem. Biochem. 1975, **31**, 81.
- 550. Haines, A. H. Adv. Carbohydr. Chem. Biochem. 1981, **39**, 13.
- 551. Brossmer, R.; Eschenfelder, V. Liebigs Ann. Chem. 1972, 762, 160.
- 552. Fujii, S.; Unemi, N.; Takeda, S. DE 2814202, 1978 [Chem. Abstr. 1979, **90**, 43803q].
- 553. Hronowski; L. J. J.; Szarek, W. A. J. Med. Chem. 1982, 25, 522.
- 554. Rosowsky, A.; Kim, S.-H.; Wick, M. J. Med. Chem. 1981, 24, 1177.
- 555. Smirnov, I. P.; Kochetkova, S. V.; Shchaveleva, I. L.; Tsilevich, T. L.; Gottikh, B. P.; Florent'ev, V. L. Bioorg. Khim. 1988, **14**, 921 [Chem. Abstr. 1989, **110**, 231998n].
- 556. Rosowsky, A.; Kim, S.-H.; Trites, D.; Wick, M. J. Med. Chem. 1982, **25**, 1034.
- 557. Hollis Showalter, H. D.; Putt, S. R. Tetrahedron Lett. 1981, 22, 3155.
- 558. Kelley, J. L.; Krochmal, M. P.; Schaeffer, H. J. J. Med. Chem. 1981, **24**, 472.
- 559. Bessodes, M.; Benamghar, R.; Antonakis, K. Carbohydr. Res. 1990, **200**, 493.
- 560. Farr, R. A.; Bey, P.; Sunkara, P. S.; Lippert, B. J. J. Med. Chem. 1989, **32**, 1879.
- 561. Sasamori, H.; Hori, C.; Yoshida, M.; Umezawa, H. JP 63115895, 1986 [Chem. Abstr. 1988, **109**, 110864m].
- 562. Czernecki, S.; Ezzitouni, A. Tetrahedron Lett. 1993, 34, 315.

- 563. Morr, M. Liebigs Ann. Chem. 1982, 666.
- 564. Kulinkovich, L. N.; Timoshchuk, V. A. Zh. Obshch. Khim. 1983, 53,
 1649 [Chem. Abstr. 1983, 99, 212866f].
- 565. Bartolome, N. F. J.; Carreno, G. V.; Castillo, A. I.; Quiroga, E.J.A. ES 2040615, 1993 [Chem. Abstr. 1994, **120**, 317324h].
- 566. Esanu, A. DE 3514641, 1985 [Chem. Abstr. 1986, 104, 110121p].
- 567. Hamilton, H. W.; Johnson, S. A. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.3; p. 286.
- 568. Clement, M. A.; Berger, S. H. Med. Chem. Res. 1992, 2, 154.
- 569. Tarköy, M.; Bolli, M.; Schweizer, B.; Leumann, C. Helv. Chim. Acta 1993, **76**, 481.
- 570. Schneider, K. C.; Benner, S. A. Tetrahedron Lett. 1990, **31**, 335.
- 571. Sterzycki, R. Z.; Mansuri, M. M.; Martin, J. C. EP 391411, 1990, [Chem. Abstr. 1990, **114**, 229305y].
- 572. Wheeler, W. J.; Mabry, T. E.; Jones, C. D. J. Labelled Comp. Radiopharm. 1991, **29**, 583.
- 573. Gosselin, G.; Puech, F.; Genu-Dellac, C.; Imbach, J.-L. Carbohydr. Res. 1993, **249**, 1.
- 574. Lin, T.-S.; Zhu, J.-L.; Dutschman, G. E.; Cheng, Y.-C.; Prusoff, W. H. J. Med. Chem. 1993, **36**, 353.
- 575. Beauchamp, L. M.; Serling, B. L.; Kelsey, J. E.; Biron, K. K.; Collins, P.; Selway, J.; Lin, J.-C.; Schaeffer, H. J. J. Med. Chem. 1988, **31**, 144.
- 576. Czernecki, S; Ezzitouni, A. J. Org. Chem. 1992, 57, 7325.
- 577. Czernecki, S.; Ezzitouni, A.; Krausz, P. Synthesis 1990, 651.
- 578. Almond, M. R.; Lowen, G. T.; Martin, G. E.; Rideout, J. L. Nucleosides & Nucleotides 1993, **12**, 905.
- 579. Beer, D.; Meuwly, R.; Vasella, A. Helv. Chim. Acta 1982, 65, 2570.
- 580. Murai, Y.; Shiroto, H.; Ishizaki, T.; limori, T.; Kodama, Y.; Ohtsuka, Y.; Oishi, T. Heterocycles 1992, **33**, 391.
- 581. Hiebl, J.; Zbiral, E; Balzarini, J.; De Clercq, E. J. Med. Chem. 1992, **35**, 3016.
- 582. Hiebl, J.; Zbiral, E. Tetrahedron Lett. 1990, **31**, 4007.
- 583. Hiebl, J.; Zbiral, E.; Balzarini, J.; De Clercq, E. Nucleosides & Nucleotides 1991, **10**, 521.
- 584. Niedballa, U.; Vorbrüggen, H. DE 1943428, 1971 [Chem. Abstr. 1971, **74**, 100361].
- 585. Morr, M.; Ernst, L.; Grotjahn, L. Z. Naturforsch. 1983, 38b , 1665.
- 586. Montgomery, J. A. WO 91 04, 033, 1991 [Chem. Abstr. 1991, **115**, 115017w].

- 587. Sterzycki, R. Z.; Martin, J. C.; Wittman, M.; Brankovan, V.; Yang, H.; Hitchcock, M. J.; Mansuri, M. M. Nucleosides & Nucleotides 1991, 10, 291.
- 588. Morr, M.; Ernst, L.; Schomburg, D. Liebigs Ann. Chem. 1991, 615.
- 589. Pudlo, J. S.; Wadwani, S.; Milligan, J. F.; Matteucci, M. D. Bioorg. Med. Chem. Lett. 1994, 4, 1025.
- 590. Augustyns, K.; Rozenski, J.; Van Aerschot, A.; Janssen, G.; Herdewijn, P. J. Org. Chem. 1993, **58**, 2977.
- 591. Ojha, L. M.; Gulati, D.; Seth, N.; Bhakuni, D. S.; Pratap, R.; Agarwal, K. C. Nucleosides & Nucleotides 1995, **14**, 1889.
- 592. Halmos, T.; Komiotis, D.; Antonakis, K. Carbohydr. Res. 1986, **156**, 256.
- 593. Robins, M. J.; Madej, D.; Hansske, F.; Wilson, J. S.; Gosselin, G.; Bergogne, M. C.; Imbach, J.-L.; Balzarini, J.; De Clercq, E. Can. J. Chem. 1988, **66**, 1258.
- 594. Koizumi, F., Oritani, T.; Yamashita, K. Agric. Biol. Chem. 1990, **54**, 3093.
- 595. Génu-Dellac, C.; Gosselin, G.; Puech, F.; Henry, J.-C.; Aubertin, A.-M.; Obert, G.; Kirn, A.; Imbach, J.-L. Nucleosides & Nucleotides 1991, **10**, 1345.
- 596. Génu-Dellac, C.; Gosselin, G.; Imbach, J.-L. Tetrahedron Lett. 1991, **32**, 79.
- 597. Rassu, G.; Spanu, P.; Pinna, L.; Zanardi, F.; Casiraghi, G. Tetrahedron Lett. 1995, **36**, 1941
- 598. Gurjar, M. K.; Lalitha, S. V. S.; Sharma, P. A.; Rama Rao, A. V. Tetrahedron Lett. 1992, **33**, 7945.
- 599. Gurjar, M. K.; Kunwar, A. C.; Reddy, D. V.; Islam, A.; Lalitha, S. V. S.; Jagannadh, B.; Rama Rao, A. V. Tetrahedron 1993, **49**, 4373.
- 600. Secrist III, J. A.; Riggs, R. M.; Tiwari, K. N.; Montgomery, J. A. J. Med. Chem. 1992, **35**, 533.
- 601. Tiwari, K. N.; Montgomery, J. A.; Secrist, III, J. A. Nucleosides & Nucleotides 1993, 12, 841.
- 602. Kulikowski, T.; Zawadzki, Z.; Shugar, D.; De Clercq, E. Nucleic Acids Res., Symp. Ser. 9 1981, 103.
- 603. Benson, T. J.; Robinson, B. J. Chem. Soc., Perkin Trans. 1 1992, 211.
- 604. Hosmane, R. S.; Bhan, A.; Karpel, R. L. J. Org. Chem. 1990, 55, 5882.
- 605. Mansuri, M. M.; Farina, V.; Starrett Jr., J. E.; Benigni, D. A.; Brankovan, V.; Martin, J. C. Bioorg. Med. Chem. Lett. 1991, **1**, 65.
- 606. Lewis, A. F.; Revankar, G. R.; Hogan, M. E. J. Heterocycl. Chem. 1993, **30**, 1309.

- 607. Mansuri, M. M.; Starrett, Jr., J. E.; Wos, J. A.; Tortolani, D. R.; Brodfuehrer, P. R.; Howell, H. G.; Martin, J. C. J. Org. Chem. 1989, 54, 4780.
- 608. Vorbrüggen, H.; Bennua, B. In *Nucleic Acid Chemistry*; Townsend, L.
 B., Tipson, R. S., Eds.; Wiley: New York; 1986, Vol.3; p. 70.
- 609. Hui, C. F.; Hutchinson, D. W. Biochim. Biophys. Acta 1981, 656, 129.
- 610. Dinan, F. J.; Chodkowski, J.; Barren, J. P.; Robinson, D. M.; Reinhardt, D. V. J. Org. Chem. 1982, 47, 1769.
- 611. Kondo, T.; Fukami, T.; Goto, T.; Kawakami, M.; Takemura, S. Nucleic Acids Res., Symp. Ser. 12 1983, 127.
- 612. Yavorsky, A. E.; Turov, A. V.; Reshotko, L. N.; Florent'ev, V. L. Bioorg. Khim. 1990, **16**, 963 [Chem. Abstr. 1990, **113**, 224415t]. L
- 613. Mathé, C.; Périgaud, C.; Gosselin, G.; Imbach, J.-L. Nucleosides & Nucleotides 1994, **13**, 437.
- 614. Absalon, M. J.; Krishnamoorthy, C. R.; McGall, G.; Kozarich, J. W.; Stubbe, J. Nucleic Acids Res. 1992, **20**, 4179.
- 615. Van Galen, P. J. M.; Ijzerman, A. P.; Soudijn, W. Nucleosides & Nucleotides 1990, 9, 275.
- 616. Henry, E. M.; Kini, G. D.; Larson, S. B.; Robins, R. K.; Alaghamandan, H. A.; Smee, D. F. J. Med. Chem. 1990, 33, 2127.
- 617. Hosmane, R. S.; Bhan, A. Nucleosides & Nucleotides 1990, 9, 913.
- 618. Hosmane, R. S.; Vaidya, V. P.; Chung, M. K. Nucleosides & Nucleotides 1991, **10**, 1693.
- 619. Czernecki, S.; Le Diguarher, T. Synthesis 1991, 683.
- 620. Bellon, L.; Barascut, J.-L.; Imbach, J.-L. Nucleosides & Nucleotides 1992, **11**, 1467.
- 621. Trehan, S. B.; MacDiarmid, J. E.; Bardos, T. J.; Cheng, Y. Med. Chem. Res. 1991, **1**, 30.
- 622. Wolfe, M. S.; Harry-O'Kuru, R. E. Tetrahedron Lett. 1995, 36, 7611.
- 623. Harry-O'Kuru, R. E.; Smith, J. M.; Wolfe, M. S. J. Org. Chem. 1997, 62, 1754.
- 624. Hobbs, J. B.; Eckstein, F. J. Org. Chem. 1977, 42, 714.
- 625. Itoh, T.; Mizuno, Y. Heterocycles 1976, 5, 285.
- 626. Cristalli, G.; Franchetti, P.; Grifantini, M.; Vittori, S.; Bordoni, T.; Geroni, C. J. Med. Chem. 1987, **30**, 1686.
- 627. Cottam, H. B.; Revankar, G. R.; Robins, R. K. Nucleic Acids Res. 1983, **11**, 871.
- 628. Salcines, E. M.; Schneller, S. W. Nucleosides & Nucleotides 1989, 8, 1083.
- 629. Youssefyeh, R. D.; Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem.

1979, **44**, 1301.

- 630. Sakaguchi, M.; Webb, M. W.; Agrawal, K. C. J. Med. Chem. 1982, **25**, 1339.
- 631. Montgomery, J. A.; Secrist III, J. A. WO 9104033, 1991 [Chem. Abstr. 1991, **115**, 115017].
- 632. Prisbe, E. J.; Smejkal, J.; Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem. 1976, **41**, 1836.
- 633. Saneyoshi, M.; Watanabe, S. Chem. Pharm. Bull. 1988, 36, 2673.
- 634. Saneyoshi, M.; Ozaki, S. JP 7652183, 1976 [Chem. Abstr. 1977, **86**, 43973n].
- 635. Jois, Y. H. R.; Kwong, C. D.; Riordan, J. M.; Montgomery, J. A.; Secrist III, J. A. J. Heterocycl. Chem. 1993, **30**, 1289.
- 636. Itaya, T.; Saito, T.; Harada, T.; Kagatani, S.; Fujii, T. Heterocycles 1982, **19**, 1059.
- 636a. Papageorgiou, C.; Tamm, C. Tetrahedron Lett. 1986, 27, 555.
- 637. Ochi, K.; Miyamoto, K.; Mitsui, H.; Tsuruma, Y.; Matsunaga, I.; Matsuno, T.; Takanashi, S.; Shindo, M. EP 46307, 1984 [Chem. Abstr. 1982, **97**, 6068c].
- 638. Ozaki, S.; Watanabe, Y.; Hoshiko, T.; Nagase, T.; Ogasawara, T.; Furukawa, H.; Uemura, A.; Ishikawa, K.; Mori, H.; Hoshi, A.; Iigo, M.; Tokuzen, R. Chem. Pharm. Bull. 1986, **34**, 150.
- 639. Michael, U.; Sasson, Z.; Schoenberger, E. DE 2744956, 1978 [Chem. Abstr. 1978, **89**, 24357].
- 640. Ueda, S.; Takeda, S.; Yamawaki, I.; Yamashita, J.-I.; Yasumoto, M.; Hashimoto, S. Chem. Pharm. Bull. 1982, **30**, 125.
- 641. Ochi, K.; Miyamoto, K.; Miura, Y.; Mitsui, H.; Matsunaga, I.; Shindo, M. Chem. Pharm. Bull. 1985, **33**, 1703.
- 642. Nishitani, T.; Horikawa, H.; Iwasaki, T.; Matsumoto, K.; Inoue, I.; Miyoshi, M. J. Org. Chem. 1982, **47**, 1706.
- 643. Kelley, J. L.; Kelsey, J. E.; Hall, W. R.; Krochmal, M. P.; Schaeffer, H. J. J. Med. Chem. 1981, **24**, 753.
- 644. Holshouser, M. H.; Shipp, A. M.; Ferguson, P. W. J. Med. Chem. 1985, **28**, 242.
- 645. Banijamali, A. R.; Foye, W. O. J. Heterocycl. Chem. 1986, 23, 1613.
- 646. Takanaka, K.; Muraoka, M; Tsuji, T. J. Heterocycl. Chem. 1997, **34**, 669.
- 647. Woodman, R. J. Drugs of the Future 1982, 7, 107.
- 648. Zhuk, R. A.; Berzina, A.; Serins, L.; Kaulina, L.; Hillers, S. Khim.
 Geterotsikl. Soedin. 1977, 9, 1258 [Chem. Abstr. 1978, 88, 22843w].
- 649. Yasumoto, M.; Yamashita, J.-I.; Hashimoto, S. Yakugaku Zasshi

1978, 98, 1551 [Chem. Abstr. 1979, 90, 121528].

- 650. Kim, C. U.; Martin, J. C.; Misco, P. F.; Luh, B. Y. EP 398231, 1990 [Chem. Abstr. 1991, **115**, 208461].
- 651. Yamashita, K.; lumi, K.; lida, A. JP 0311089, 1991 [Chem. Abstr. 1991, **114**, 207698b].
- 652. Yamashita, M.; Ikai, K.; Takahashi, C.; Oshikawa, T. Phosphorus Sulfur 1993, **79**, 293.
- 653. Tsilevich, T. L.; Shchaveleva, I. L.; Nosach, L. N.; Zhovnovataya, V. L.;
 Smirnov, I. P.; Kochetkova, S. V.; Gottikh, B. P.; Florentev, V. L.
 Bioorg. Khim. 1988, **14**, 689 [Chem. Abstr. 1988, **109**, 66372y].
- 654. Keppeler, K.; Kiefer, G.; De Clercq, E. Arch. Pharm. (Weinheim) 1986, **319**, 360.
- 655. Lin, T.-S.; Liu, M.-C. Synth. Commun. 1988, 18, 931.
- 656. Renault, J.; Laduree, D.; Robba, M. Nucleosides & Nucleotides 1994, **13**, 891.
- 657. Keppeler, K.; de Clercq, E. Arch. Pharm. (Weinheim) 1987, 320, 271.
- 658. Renault, J.; Laduree, D.; Robba, M. Nucleosides & Nucleotides 1994, 13, 1135.
- 659. Jourdan, F.; Ladurée, D.; Robba, M. J. Heterocycl. Chem. 1994, **31**, 305.
- Lin, A. J.; Benjamin, R. S.; Rao, P. N.; Loo, T. L. J. Med. Chem. 1979, 22, 1096.
- 661. Mertens, A.; Koch, E.; Bernhard; Harald DE 3905725, 1990 [Chem. Abstr. 1991, **114**, 207694x].
- 662. Hangeland, J. J.; De Voss, J. J.; Heath, J. A.; Townsend, C. A.; Ding, W.-D.; Ashcroft, J. S.; Ellestad, G. A. J. Am. Chem. Soc. 1992, **114**, 9200.
- 663. Harnden, M. R.; Bailey, S.; Shanks, C. T. EP 49144, 1982 [Chem. Abstr. 1982, **97**, 72384a].
- 664. Bailey, S.; Harnden, M. R. Nucleosides & Nucleotides 1987, 6, 555.
- 665. Yavorskii, A. E.; Reshot'ko, L. N.; Kucheryavenko, A. A.; Florent'ev, V. L. Khim.-Farm. Zh. 1988, 7, 833 [Chem. Abstr. 1989, 110, 135144].
- 666. Yavorskii, A. E.; Kochetkova, S. V.; Smirnov, I. P.; Shchaveleva, I. L.;
 Tsilevich, T. L.; Gottikh, B. P.; Florent'ev, V. L. Bioorg. Khim. 1987, 13, 1000 [Chem. Abstr. 1988, 108, 131399h].
- 667. Tanabe Seiyaku Co., Ltd. JP 58216169, 1983 [Chem. Abstr. 1984, **100**, 174851b].
- 668. Khripach, N. B.; Mikhailopulo, I. A.; Akhrem, A. A. Khim. Geterotsikl. Soedin. 1982, 1, 111 [Chem. Abstr. 1982, 96, 200078a].
- 669. Skulnick, H. I. DE 2735378, 1989 [Chem. Abstr. 1978, 89, 24728].

- 670. McCormick, J. E.; McElhinney, R. S. J. Chem. Res. (S) 1981, 12.
- 671. Iwasaki, T.; Nishitani, T.; Horikawa, H.; Inoue, I. Tetrahedron Lett. 1981, **22**, 1029.
- 672. Parikh, D. K.; Watson, R. R. J. Med. Chem. 1978, 21, 706.
- 673. Yamashita, M.; Kawai, Y.; Uchida, I.; Komori, T.; Kohsaka, M.; Imanaka, H.; Sakane, K.; Setoi, H.; Teraji, T. J. Antibiotics 1984, **37**, 1284.
- 674. Szekeres, G. L; Witkowski, J. T.; Robins, R. K. J. Carbohydr., Nucleosides, Nucleotides 1977, **4**, 147
- 675. Varela, O.; De Fina, G.; de Lederkremer, R. M. J. Chem. Res. (S) 1990, 262.
- 676. Bailey, S.; Harnden, M. R. J. Chem. Soc., Perkin Trans. 1 1988, 2767.
- 677. Lucey, N. M.; McCormick, J. E.; McElhinney, R. S. J. Chem. Soc., Perkin Trans. 1 1990, 795.
- 678. Chiu, T. M. K.; Ohrui, H.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1973, 38, 3622.
- 679. Kowollik, G.; Demirow, G.; Schütt, M.; Langen, P. Z. Chem. 1972, 12, 106.
- 680. Cook, P. D.; Allen, L. B.; Streeter, D. G.; Huffman, J. H.; Sidwell, R. W.; Robins, R. K. J. Med. Chem. 1978, **21**, 1212.
- 681. Efange, S. M. N.; Alessi, E. M.; Shih, H. C.; Cheng, Y.-C.; Bardos, T. J. J. Med. Chem. 1985, 28, 904.
- 682. Shchaveleva, I. L.; Khorlin, A. A.; Gottikh, B. P.; Florentev, V. L. Bioorg. Khim. 1988, 14, 824 [Chem. Abstr. 1988, 110, 24210].
- 683. Namikawa, J.; Tominaga, M.; Manabe, Y. JP 62258396, 1986 [Chem. Abstr. 1988, **109**, 129604].
- 684. Sato, T.; Watamori, N. JP 0269476, 1990 [Chem. Abstr. 1990, **113**, 97977m].
- 685. Sato, T.; Watamori, N. JP 02229192, 1990 [Chem. Abstr. 1991, **114**, 102709c].
- 686. McCormick, J. E.; McElhinney, R. S. J. Chem. Res. (S) 1980, 126.
- 687. McCormick, J. E.; McElhinney, R. S. J. Chem. Soc., Perkin Trans. 1 1978, 500.
- 688. Kilevica, M.; Maurins, J.; Paegle, R.; Liepins, E.; Zidermane, A.; Lidak, M. Khim. Geterotskl. Soedin. 1981, **11**, 1532 [Chem. Abstr. 1982, **96**, 85922g].
- 689. Schmit, C. Synlett 1994, 241
- 690. Mori, Y.; Morishima, N. Nucleic Acids Res., Symp. Ser. 29 1993, 47.
- 691. Holý, A. Czech Patent 185435, 1980 [Chem. Abstr. 1981, 95, 98244].

- 692. Ogura, H.; Iwaki, K.; Furuhata, K. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.4; p. 109.
- 693. Azhayev, A.; Guzaev, A.; Hovinen, J.; Mattinen, J.; Sillanpää, R.; Lönnberg, H. Synthesis 1994, 396.
- 694. Maeda, M.; Kajimoto, N.; Yamaizumi, Z.; Okamoto, Y.; Nagahara, K.; Takayanagi, H. Tetrahedron Lett. 1997, **38**, 6841.
- 695. Lichtenthaler, F. W.; Morino, T.; Winterfeldt, W. Nucleic Acids Res., Spec. Publ. 1 1975, S33.
- 696. Lichtenthaler, F. W.; Morino, T.; Winterfeldt, W.; Sanemitsu, Y. Tetrahedron Lett. 1975, **16**, 3527.
- 697. Schlimme, E.; Frister, H.; Raezke, K.-P. Nucleosides & Nucleotides 1988, **7**, 577.
- 698. Frister, H.; Schlimme, E. Liebigs Ann. Chem. 1985, 1704.
- 699. Srivastava, P. C.; Robins, R. K. J. Med. Chem. 1981, 24, 1172.
- 700. Revankar, G. R.; Robins, R. K. J. Heterocycl. Chem. 1976, 13, 169.
- 701. Gosselin, G.; Imbach, J.-L.; Townsend, L. B.; Panzica, R. P. J. Heterocycl. Chem. 1979, **16**, 1185.
- 702. Hasan, A.; Lambert, C. R.; Srivastava, P. C. J. Heterocycl. Chem. 1990, **27**, 1877.
- 703. Andrés, J. I.; García-Lopez, M. T. J. Heterocycl. Chem. 1986, 23, 679.
- 704. Cook, P. D.; Rousseau, R. J.; Mian, A. M.; Dea, P.; Meyer, Jr., R. B.; Robins, R. K. J. Am. Chem. Soc. 1976, 98, 1492.
- 705. Robins, R. K.; Rousseau, R. J.; Mian, A. M. DE 2529533, 1977 [Chem. Abstr. 1977, **86**, 171784].
- 706. Cook, P. D.; Rousseau, R. J.; Mian, A. M.; Meyer, Jr., R. B.; Dea, P.;
 Ivanovics, G.; Streeter, D. G.; Witkowski, J. T.; Stout, M. G.; Simon, L. N.; Sidwell, R. W.; Robins, R. K. J. Am. Chem. Soc. 1975, **97**, 2916.
- 707. Mian, A. M.; Robins, R. K. US 3919193, 1975 [Chem. Abstr. 1976, 84, 90520f].
- 708. Alonso, R.; Andrés, J. I.; García-López, M. T.; de las Heras, F. G.; Herranz, R.; Alarcón, B.; Carrasco, L. J. Med. Chem. 1985, **28**, 834.
- 709. Herranz, R.; Andres Gil, J. I.; García Lopez, M. T.; Gomez de las Heras, F. ES 522927, 1985 [Chem. Abstr. 1988, **108**, 22218c].
- 710. Hayashi, M.; Mizuno, K.; Hirano, T.; Yaso, M. JP 75121275, 1975 [Chem. Abstr. 1976, **84**, 122242k].
- 711. Fedoseeva, N. M.; Zavadskaya, M. I.; Kvasyuk, E. I.; Drachenova, O. A.; Boreko, E. I. Khim. Geterosikl. Soedin. 1983, 7, 923 [Chem. Abstr. 1983, 99, 212863c].
- 712. Srivastava, P. C.; Rousseau, R. J.; Robins, R. K. J. Chem. Soc.,

Chem. Commun. 1977, 151.

- 713. Frister, H.; Kemper, K.; Boos, K.-S.; Schlimme, E. Liebigs Ann. Chem. 1985, 510.
- 714. Lynch, B. M.; Sharma, S. C. Can. J. Chem. 1976, 54, 1029.
- 715. Schlieper, C. A.; Wemple, J. Nucleosides & Nucleotides 1984, 3, 369.
- 716. Robins, M. J.; Kaneko, C.; Kaneko, M. Can. J. Chem. 1981, 59, 3356.
- 717. Knoblauch, B. H. A.; Geis, U.; Deters, D.; Müller, C. E. Arch. Pharm. (Weinheim) 1993, **326**, 662.
- 718. Mel'nik, S. Ya.; Bakhmedova, A. A.; Miniker, T. D.; Preobrazhenskaya,M. N. Nucleic Acids Res., Symp. Ser. 9 1981, 53.
- 719. Lönnberg, H. Tetrahedron 1982, 38, 1517.
- 720. Mikhailopulo, I. A.; Kalinichenko, E. N.; Akhrem, A. A. J. Carbohyd., Nucleosides, Nucleotides 1981, **8**, 227.
- 721. Bärwolff, D.; Etzold, G.; Langen, P. DD 98930, 1972 [Chem. Abstr. 1974, **80**, 83535d].
- 722. Chwang, T. L.; Wood, W. F.; Parkhurst, J. R.; Nesnow, S.; Danenberg, P. V.; Heidelberger, C. J. Med. Chem. 1976, **19**, 643.
- 723. Akhrem, A. A.; Pupeiko, N. E.; Kvasyuk, E. I.; Mikhailopulo, I. A.; Reshchikov, V. P.; Fertukova, N. M.; Nikolaeva, N. A.; Grishina, T. P. Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 1979, 6, 103 [Chem. Abstr. 1980, 92, 147110u].
- 724. Fu, Y. L.; Parthasarathy, R.; Bobek, M. J. Carbohydr., Nucleosides, Nucleotides 1978, **5**, 79.
- 725. Wegner, G.; Jochims, J. C. Chem. Ber. 1979, 112, 1941.
- 726. Berkowitz, P. T.; Robins, R. K.; Dea, P.; Long, R. A. J. Org. Chem. 1976, **41**, 3128.
- 727. Gosselin, G.; Loukil, H. F.; Mathieu, A.; Mesli, A. J. Heterocycl. Chem. 1978, **15**, 657.
- 728. Barascut, J. L.; Molko, D.; Imbach, J. L. J. Carbohyd., Nucleosides, Nucleotides 1980, **7**, 185.
- 729. Pickering, M. V.; Dea, P.; Streeter, D. G.; Witkowski, J. T. J. Med. Chem. 1977, **20**, 818.
- 730. Itoh, T.; Ono, K.; Sugawara, T.; Mizuno, Y. Nucleosides & Nucleotides 1982, **1**, 179.
- 731. Itoh, T.; Sugawara, T.; Mizuno, Y. Heterocycles 1982, 17, 305
- 732. Itoh, T.; Sugawara, T.; Mizuno, Y. J. Heterocycl. Chem. 1982, 19, 513.
- 733. Bartholomew, D. G.; Dea, P.; Robins, R. K.; Revankar, G. R. J. Org. Chem. 1975, **40**, 3708.
- 734. Lynch, B. M.; Sharma, S. C. Can. J. Chem. 1977, 55, 831.
- 735. Cuny, E.; Lichtenthaler, F. W. Nucleic Acids Res., Spec. Publ. 1 1975,

S25.

- 736. Steinmaus, H. DE 2224379, 1973 [Chem. Abstr. 1974, 80, 48338v].
- 737. Baraldi, P. G.; Simoni, D.; Periotto, V.; Manfredini, S.; Guarneri, M.; Manservigi, R.; Cassai, E.; Bertolasi, V. J. Med. Chem. 1984, 27, 986.
- 738. Kazmina, E. M.; Bezchinsky, Y. E.; Novikov, N. A.; Rosenberg, S. G.; Bochkarev, A. V.; Zdanov, A. S.; Fedorov, I. I. Collect. Czech. Chem. Commun. 1990, 55, 41.
- 739. Goya, P.; Martínez, A.; Ochoa, C. Nucleosides & Nucleotides 1987, 6, 631.
- 740. de la Cruz, A.; Elguero, J.; Goya, P.; Martinez, A.; De Clercq, E. J. Chem. Soc., Perkin Trans. 1 1993, 845.
- 741. Parry, R. J.; Ju, S. Tetrahedron 1991, 47, 6069.
- 742. Rama Rao, A. V.; Gurjar, M. K.; Lalitha, S. V. S. J. Chem. Soc., Chem. Commun. 1994, 1255.
- 743. Singh, K.; Hasan, A.; Pratap, R.; Guru, P. Y.; Bhakuni, D. S. J. Indian Chem. Soc. 1989, **66**, 686.
- 744. Kelley, J. A.; Driscoll, J. S.; McCormack, J. J.; Roth, J. S.; Marquez, V. E. J. Med. Chem. 1986, **29**, 2351.
- 745. Jochims, J. C.; v. Voithenberg, H.; Wegner, G. Chem. Ber. 1978, **111**, 2745.
- 746. Mackiewiczowa, D.; Jasinska, J.; Sokolowski, J. Pol. J. Chem. 1981,
 55, 2333 [Chem. Abstr. 1983, 99, 88504v].
- 747. Kochetkova, S. V.; Tsilevich, T. L.; Smirnov, I. P.; Shchaveleva, I. L.; Khorlin, A. A.; Gottikh, B. P.; Florentev, V. L. Bioorg. Khim. 1988, 14, 820 [Chem. Abstr. 1989, 110, 8558y]
- 748. Suzuki, T.; Sakaguchi, M.; Miyata, Y.; Suzuki, A.; Mori, T. EP 513351, 1992 [Chem. Abstr. 1991, **115**, 256569q].
- 749. Jeong, L. S.; Beach, J. W.; Chu, C. K. J. Heterocycl. Chem. 1993, **30**, 1445.
- 750. Johansson, K. N. G.; Malmberg, H. C. G.; Noreen, R.; Sahlberg, S. C.; Sohn, D. D.; Gronowitz, S. EP 357571 1990 [Chem. Abstr. 1990, **112**, 23577e].
- 751. Kuno, H.; Niihata, S.; Ebata, T.; Matsushita, H. Heterocycles 1995, **41**, 523
- 752. Watanabe, K. A.; Matsuda, A.; Itoh, T. Can. J. Chem. 1981, **59**, 468.
- 753. Etzold, G.; v. Janta-Lipinski, M.; Langen, P. J. Prakt. Chem. 1976, **318**, 79.
- 754. Randow, H.; Miethchen, R. J. Prakt. Chem. 1991, 333, 285.
- 755. Timoshchuk, V. A. Zh. Obshch. Khim. 1984, **54**, 2646 [Chem. Abstr. 1985, **102**, 113861z].

- 756. Komiotis, D.; Delatre, S.; Holt, L.; Ollapally, A. P.; Balzarini, J.; De Clercq, E.; ligo, M. Nucleosides & Nucleotides 1991, **10**, 431.
- 757. Ford, R. A.; Gibson, M.; Rawji, H.; Hughes, L.; Montserret, R.; Ollapally, A. P. Nucleosides & Nucleotides 1984, **3**, 313.
- 758. Cheng, V.; Hughes, L.; Griffin, V. B.; Montserret, R.; Ollapally, A. P. Nucleosides & Nucleotides 1986, 5, 223.
- 759. Alaoui-Jamali, M. A.; Egron, M. J.; Bessodes, M.; Antonakis, K.; Chouroulinkov, I. Eur. J. Med. Chem. 1987, **22**, 305.
- 760. Sakaguchi, M.; Larroquette, C. A.; Agrawal, K. C. J. Med. Chem. 1983, **26**, 20.
- 761. Lerner, L. M.; Mennitt, G.; Gaetjens, E.; Sheid, B. Carbohydr. Res. 1993, **244**, 285.
- 762. Brink, A. J.; De Villiers, O. G.; Jordaan, A. Carbohydr. Res. 1977, **54**, 285.
- 763. Mikhailopulo, I. A.; Sivets, G. G.; Pricota, T. I.; Poopeiko, N. E.; Balzarini, J.; De Clercq, E. Nucleosides & Nucleotides 1991, 10, 1743.
- 764. Murata, M.; Achiwa, K. Chem. Pharm. Bull. 1990, 38, 836.
- 765. Brink, A. J.; Coetzer, J.; De Villiers, O. G.; Hall, R. H.; Jordaan, A.; Kruger, G. J. Tetrahedron 1976, **32**, 965.
- 766. Lichtenthaler, F. W.; Heerd, A.; Strobel, K. Chem. Lett. 1974, 449.
- 767. Mahrwald, R.; Wagner, G. Pharmazie 1980, 35, 587.
- 768. Kulinkovich, L. N.; Timoshchuk, V. A. Khim. Prir. Soedin. 1983, 5, 617 [Chem. Abstr. 1984, 100, 156915w]
- 769. Watanabe, K. A.; Hollenberg, D. H.; Fox, J. J. J. Antibiotics 1976, **29**, 597.
- 770. Kaneko, M.; Kimura, M.; Tanaka, H.; Shimizu, F.; Arakawa, M.; Shimizu, B. Nucleic Acids Res., Symp. Ser. 3 1977, S35.
- 771. Chwang, T. L.; Heidelberger, C. Tetrahedron Lett. 1974, 15, 95.
- 772. Azhaev, A. V.; Ozols, A. M.; Bushnev, A. S.; Dyatkina, N. B.;
 Kochetkova, S. V.; Viktorova, L. S.; Kukhanova, M. K.; Kraevskii, A. A.; Gottikh, B. P. Nucleic Acids Res., Symp. Ser. 6 1979, 625.
- 773. Kumar, A.; Khan, S. I.; Manglani, A.; Khan, Z. K.; Katti, S. B. Nucleosides & Nucleotides 1994, **13**, 1049.
- 774. Rizzo, C. J.; Dougherty, J. P.; Breslow, R. Tetrahedron Lett. 1992, **33**, 4129.
- 775. Warnock, D. H.; Watanabe, K. A.; Fox, J. J. Carbohydr. Res. 1971, **18**, 127.
- 776. Jochims, J. C.; von Voithenberg, H.; Wegner, G. Chem. Ber. 1978, **111**, 1693.
- 777. Novák, J. J. K. Collect. Czech. Chem. Commun. 1978, 43, 1511.

- 778. Sumitomo Chemical Co., Ltd. JP 5931797, 1984 [Chem. Abstr. 1984, **101**, 111351p].
- 779. Idegami, K.; Ikeda, K.; Achiwa, K. Chem. Pharm. Bull. 1990, 38, 1766.
- 780. Lerner, L. M.; Mennitt, G. Carbohydr. Res. 1994, 259, 191.
- 781. Anzai, K.; Saita, T. Nucleic Acids Res., Spec. Publ. 2 1976, 87.
- 782. Murofushi, Y.; Kimura, M.; Kuwano, H.; lijima, Y.; Yamazaki, M.; Kaneko, M. Chem. Pharm. Bull. 1988, **36**, 3760.
- 783. Rassu, G.; Pinna, L.; Spanu, P.; Ulgheri, F.; Casiraghi, G. Tetrahedron Lett. 1994, **35**, 4019.
- 784. Bardos, T. J.; Cheng, Y.-C.; Schroeder, A. C.; Mbua, N. E. S. EP 175004, 1984 [Chem. Abstr. 1986, **105**, 60912v].
- 785. Paulsen, H.; Brieden, M.; Benz, G. Liebigs Ann. Chem. 1987, 565.
- 786. Ogilvie, K. K.; Dixit, D. M.; Radatus, B. K.; Smith, K. O.; Galloway, K. S. Nucleosides & Nucleotides 1983, 2, 147.
- 787. Ogilvie, K. K. EP 49072, 1982 [Chem. Abstr. 1982, 97, 56193k].
- 788. Ogilvie, K. K.; Cheriyan, U. O.; Radatus, B. K.; Smith, K. O.; Galloway, K. S.; Kennell, W. L. Can. J. Chem. 1982, 60, 3005.
- 789. Garner, P.; Park, J. M. J. Org. Chem. 1990, 55, 3772.
- 790. Kawakami, H.; Matsushita, H.; Shibagaki, M.; Naoi, Y.; Itoh, K.; Yoshikoshi, H. Chem. Lett. 1989, 1365.
- 791. Efange, S. M. N.; Cheng, Y. C.; Bardos, T. J. Nucleosides & Nucleotides 1985, 4, 545.
- 792. Chiacchio, U.; Gumina, G.; Rescifina, A.; Romeo, R.; Uccella, N.; Casuscelli, F.; Piperno, A.; Romeo, G. Tetrahedron 1996, **52**, 8889.
- 793. Linn, J. A.; Kelley, J. L. Nucleosides & Nucleotides 1993, 12, 199.
- 794. Wierenga, W.; Skulnick, H. I. Carbohydr. Res. 1981, 90, 41.
- 795. Beigel'mann, L. N.; Karpeiskii, M. Ya.; Mikhailov, S. N.; Rosenthal, A. Nucleic Acids Res., Symp. Ser. 9 1981, 115.
- 796. Mikhailov, S. N.; Beigel'mann, L. N.; Gurskaya, G. V.; Padyukova, N. Sh.; Yakovlev, G. I.; Karpeiskii, M. Ya. Carbohydr. Res. 1983, **124**, 75.
- 797. Mikhailopulo, I. A.; Zaitseva, G. V.; Mikhailovskaya, N. A. Khim. Geterotsikl. Soedin. 1982, 4, 542 [Chem. Abstr. 1982, 97, 24153f].
- 798. Iwakawa, M.; Martin, O. R.; Szarek, W. A. Carbohydr. Res. 1983, **121**, 99.
- 799. Paegle, R. A.; Lidaka, M. J.; Z^{*}huk, R. A.; MaurinŠ, J. A.; Zidermane, A. A.; Kilevica, M. K. DE 2833507, 1979 [Chem. Abstr. 1979, **91**, 39793q].
- 800. Saneyoshi, M.; Tohyama, J.; Nakayama, C. Chem. Pharm. Bull. 1982, **30**, 2223.
- 801. Bobek, M.; Bloch, A.; Kuhar, S. Tetrahedron Lett. 1973, 14, 3493.

802. Crich, D.; Hao, X. J. Org. Chem. 1998, 63, 3796.

- 802a. Mian, A. M.; Khwaja, T. A. J. Med. Chem. 1983, 26, 286.
- 803. Mian, A. M.; Khwaja, T. A. J. Med. Chem. 1983, 26, 286.
- 804. Hollis Showalter, H. D.; Putt, S. R; Borondy, P. E.; Shillis, J. L. J. Med. Chem. 1983, **26**, 1478.
- 805. Chan, E.; Putt, E. S.; Hollis Showalter, H. D.; Baker, D. C. J. Org. Chem. 1982, 47, 3457.
- 806. Preobrazhenskaya, M. N.; Mel'nik, S. Ya.; Bakhmedova, A. A.; Mezhevich, Z. I.; Mamaev, V. P.; Zagulyaeva, O. A.; Bektemirov, T. A.; Chekunova, E. V.; Andzhaparidze, O. G. SU- 671287, 1983 [Chem. Abstr. 1984, **100**, 45298c].
- 807. Sharma, R. A.; Bobek, M. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1986, Vol.3; p. 53.
- 808. Sharma, R. A.; Bobek, M. J. Org. Chem. 1975, 40, 2377.
- 809. Okada, J.; Nakano, K.; Miyake, H. Chem. Pharm. Bull. 1985, 33, 856.
- 810. Draminski, M.; Zgit-Wróblewska, A. Pol. J. Chem. 1980, **54**, 1085 [Chem. Abstr. 1981, **94**, 84418u].
- 811. Wise, D. S.; Townsend, L. B. J. Chem. Soc., Chem. Commun. 1979, 6, 271.
- 812. Coe, P. L.; Harnden, M. R.; Jones, A. S.; Noble, S. A.; Walker, R. T. J. Med. Chem. 1982, 25, 1329.
- 813. Perman, J.; Sharma, R. A.; Bobek, M. Tetrahedron Lett. 1976, **17**, 2427.
- 814. Pískala, A.; Hanna, N. B.; Budesínsky, M.; Cihák, A.; Vesely, J. Nucleic Acids Res., Symp. Ser. 9 1981, 83.
- 815. Mitchell, W. L.; Ravenscroft, P.; Hill, M. L.; Knutsen, L. J. S.; Newton, R. F.; Scopes, D.I.C. Nucleosides & Nucleotides 1985, 4, 173.
- 816. Sweeney, D. L.; Gearien, J. E.; Bauer, L.; Currie, B. L. J. Carbohydr., Nucleosides, Nucleotides 1979, 6, 387.
- 817. Gould, J. H. M.; Mann, J. J. Chem. Soc., Chem. Commun. 1997, 243.
- 818. Hollis Showalter, H. D.; Putt, S. R; Baker, D. C. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.4; p. 308.
- Woo, P. W. K.; Lee, H. T. J. Labelled Comp. Radiopharm. 1990, 28, 445.
- 820. David, S.; de Sennyey, G. Carbohydr. Res. 1979, 77, 79.
- 821. Mikhailov, S. N.; Padyukova, N. S.; Karpeiskii, M. Y.; Kolobushkina, L.I.; Beigelman, L. N. Collect. Czech. Chem. Commun. 1989, 54, 1055.
- 822. Holý, A.; LudziŠa, A.; Votruba, I.; Šediva, K.; Pischel, H. Collect. Czech. Chem. Commun. 1985, **50**, 393.
- 823. Augustyns, K.; Vandendriessche, F.; Van Aerschot, A.; Busson, R.; Urbanke, C.; Herdewijn, P. Nucleic Acids Res. 1992, 20, 4711.
- 824. Funai Pharmaceutical Industries, Ltd. JP 5929699, 1984 [Chem. Abstr. 1984, **101**, 55487y].
- 825. Poopeiko, N. E.; Kvasyuk, E. I.; Mikhailopulo, I. A.; Lidaks, M. J. Synthesis 1985, 605.
- 826. Tolstikov, G. A.; Mustafin, A. G.; Yghibaeva, G. Kh.; Gataullin, R. R.; Spirikhin, L. V.; Sultanova, V. S.; Abdrakhmanov, I. B. Mendeleev Commun. 1993, 194.
- 827. H ebanecký, H.; Holý, A. EP 301908, 1989 [Chem. Abstr. 1989, 111, 78550j].
- 828. Van Aerschot, A.; Herdewijn, P.; Janssen, G.; Cools, M.; De Clercq, E. Antiviral Res. 1989, **12**, 133.
- 829. Schmit, C. Synlett 1994, 238.
- 830. Wang, Z.; Rizzo, C. J. Tetrahedron Lett. 1997, 38, 8177.
- 831. Johansson, K. N. G.; Lindborg, B. G.; Noreen, R. EP 352248, 1990 [Chem. Abstr. 1990, **113**, 41231w].
- Watanabe, K. A.; Wempen, I. M.; Fox, J. J. Carbohydr. Res. 1972, 21, 148.
- 833. Billich, A.; Stockhove, U.; Witzel, H. Nucleic Acids Res. 1983, **11**, 7611.
- 834. David, S.; De Sennyey, G. CR Hebd. Seances Acad. Sci. Ser. C 1974, **279**, 651.
- 835. Keller, T. H.; Häner, R. Helv. Chim. Acta 1993, 76, 884.
- 836. Ogura, H.; Furuhata, F.; Iwaki, K.; Takahashi, H. Nucleic Acids Res., Symp. Ser. 10 1981, 23.
- 837. Watanabe, K. A.; Matsuda, A.; Halat, M. J.; Hollenberg, D. H.; Nisselbaum, J. S.; Fox, J. J. J. Med. Chem. 1981, **24**, 893.
- 838. McGee, D. P. C.; Martin, J. C.; Verheyden, J. P. H. J. Heterocycl. Chem. 1985, **22**, 1137.
- 839. Rusjakovski, B.; Kobe, J.; Brdar, B.; Japelj, M.; Valcavi, U. II Farmaco,
 Ed. Sc. 1982, 37, 764 [Chem. Abstr. 1983, 98, 72650h].
- 840. Mikhailov, S. N.; Efimtseva, E. V. Khim. Geterotsikl. Soedin. 1988, **7**, 947 [Chem. Abstr. 1989, **110**, 173660h].
- 841. Baud, M.-V.; Chavis, C.; Lucas, M.; Imbach, J.-L. Tetrahedron 1991, 47, 9993.
- 842. Makabe, O.; Suzuki, H.; Umezawa, S. Bull. Chem. Soc. Jpn. 1977, 50, 2689.
- 843. Mazur, A.; Tropp, B. E.; Engel, R. Tetrahedron 1984, 40, 3949.
- 844. Nelson, V.; El Khadem, H. S. J. Med. Chem. 1983, 26, 1527.

- 845. Dunkel, M.; Cook, P. D.; Acevedo, O. L. J. Heterocycl. Chem. 1993, 30, 1421.
- 846. Dumont, F.; Wightman, R. H.; Ziegler, J. C.; Chavis, C.; Imbach, J.-L. Tetrahedron Lett. 1979, 20, 3291.
- 847. Chavis, C.; Dumont, F.; Wightman, R.; Ziegler, J.-C.; Imbach, J.-L. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1986, Vol.3; p. 76.
- 848. Kazimierczuk, Z.; Dudycz, L.; Stolarski, R.; Shugar, D. Z. Naturforsch. 1980, **35c**, 30.
- Kazimierczuk, Z.; Stolarski, R.; Dudycz, L.; Shugar, D. Z. Naturforsch. 1981, 36c, 126.
- 850. Haines, D. R.; Leonard, N. J.; Wiemer, D. F. J. Org. Chem. 1982, **47**, 474.
- 851. Cook, P. D.; Robins, R. K. J. Org. Chem. 1978, 43, 289.
- 852. Wyss, P. C.; Fischer, U. Helv. Chim. Acta 1978, 61, 3149.
- 853. Fischer, U.; Wyss, P. C. DE 2735458, 1978 [Chem. Abstr. 1978, 89, 24726e].
- 854. Fuertes, M.; Robins, R. K.; Witkowski, J. T. J. Carbohydr., Nucleosides, Nucleotides 1976, **3**, 169.
- 855. Meyer, Jr., R. B.; Revankar, G. R.; Cook, P. D.; Ehler, K. W.; Schweizer, M. P.; Robins, R. K. J. Heterocycl. Chem. 1980, **17**, 159.
- 856. Ohba, Y.; Nishiwaki, T.; Akagi, H.; Mori, M. J. Chem. Res. S 1984, 276.
- 857. Cook, P. D.; Day, R. T.; Robins, R. K. J. Heterocycl. Chem. 1977, **14**, 1295.
- 858. Dutta, S. P.; Chheda, G. B. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.4; p. 152.
- 859. Legraverend, M.; Nguyen, C. H.; Zerial, A.; Bisagni, E. Nucleosides & Nucleotides 1986, **5**, 125.
- 860. McNamara, D. J.; Cook, P. D. J. Med. Chem. 1987, 30, 340.
- 861. McNamara, D. J.; Cook, P. D. EP 210639, 1987 [Chem. Abstr. 1987, 106, 176811m].
- Katz, D. J.; Wise, D. S.; Townsend, L. B. J. Heterocycl. Chem. 1975, 12, 609.
- 863. Katz, D. J.; Wise, D. S.; Townsend, L. B. J. Med. Chem. 1982, **25**, 813.
- 864. Roberts, J. L.; Poulter, C. D. J. Org. Chem. 1978, 43, 1547.
- 865. Sierzputowska-Gracz, H.; Sochacka, E.; Malkiewicz, A.; Kuo, K.; Gehrke, C. W.; Agris, P. F. J. Am. Chem. Soc. 1987, **109**, 7171
- 866. Wise, D. S.; Townsend, L. B. J. Heterocycl. Chem. 1972, 9, 1461.

- 867. Kim, C.-H.; Marquez, V. E.; Mao, D. T.; Haines, D. R.; McCormack, J. J. J. Med. Chem. 1986, 29, 1374.
- 868. Ozaki, S.; Japan. Kokai75 82 079, 1975 [Chem. Abstr. 1975, **83**, 193647m].
- 869. Scott, J. W.; Cook, A. F.; Gregg, J. J.; May, K. B.; Nix, Jr., G.; Parrish, D. R.; Wagner, D. P. J. Carbohydr., Nucleosides, Nucleotides 1981, 8, 171.
- 870. Kvasyuk, E. I.; Kulak, T. I.; Tkachenko, O, V.; Mikhailopulo, I. A.;
 Zinchenko, A. I.; Barai, V. N.; Bokut, S. B.; Marennikova, S. S.;
 Chekunova, E. V. Khim.-Farm. Zh. 1989, 23, 699 [Chem. Abstr. 1989, 111, 166826j].
- 871. Holý, A.; König, J.; Vesely, J.; Cech, D.; Votruba, I.; De Clercq, E. Collect. Czech. Chem. Commun. 1987, **52**, 1589.
- 872. Barr, P. J.; Jones, A. S.; Serafinowski, P.; Walker, R. T. J. Chem. Soc., Perkin Trans. 1 1978, 1263.
- 873. BaŠnák, I.; FarkaŠ, J. Collect. Czech. Chem. Commun. 1976, **41**, 3635.
- 874. Malkiewicz, A. J.; Nawrot, B. Z. Naturforsch. 1987, 42B, 355.
- 875. Malkiewicz, A.; Sochacka, E. Tetrahedron Lett. 1983, 24, 5387.
- 876. Anzai, K.; Miyamoto, T. Nucleic Acids Res., Spec. Publ. 3 1977, S1.
- 877. Cook, A. F.; Holman, M. J. J. Org. Chem. 1978, 43, 4200.
- 878. Otvos, L.; Kruppa, G. HU 27646, 1983 [Chem. Abstr. 1984, 100, 192219f].
- 879. Levine, H. L.; Brody, R. S.; Westheimer, F. H. Biochemistry 1980, 19, 4993.
- Tolstikov, G. A.; Baltina, L. A.; Khalilov, L. M.; Spirikhin, L. V.; Sultanmuratova, V. R.; Murinov, Y. I. Khim. Geterotsikl. Soedin. 1991, 6, 794 [Chem. Abstr. 1992, 116, 41965a].
- 881. Sun, S.; Tang, X. Q.; Merchant, A.; Anjaneyulu, P. S. R.; Piccirilli, J. A. J. Org. Chem. 1996, 61, 5708.
- 882. Lee, T.-C.; Chello, P. L.; Chou, T.-C.; Templeton, M. A.; Parham, J. C. J. Med. Chem. 1983, 26, 283.
- 883. Davis, J.; Benhaddou, R.; Granet, R.; Krausz, P.; Demonte, M.; Aubertin, A. M. Nucleosides & Nucleotides 1998, **17**, 875.
- 884. Ognyanik, S. S.; Tarnavskii, S. S.; Kobylinskaya, V. I.; Alekseeva, I. V.; Shalamai, A. S. Ukr. Khim. Zh. (Russ. Ed.) 1988, 54, 1094
 [Chem. Abstr. 1989, 111, 78513z].
- 885. Cristescu, C. Rev. Roum. Chim. 1975, 20, 1287 [Chem. Abstr. 1976, 84, 59916r].
- 886. Cristescu, C. Monatsh. Chem. 1977, 108, 1455.

- 887. Yoshii, K.; Ohba, Y.; Nishiwaki, T. J. Heterocycl. Chem. 1993, 30, 141.
- 888. Patil, V. D.; Wise, D. S.; Wotring, L. L.; Bloomer, L. C.; Townsend, L. B. J. Med. Chem. 1985, 28, 423.
- 889. Itoh, T.; Inaba, J.; Mizuno, Y. Heterocycles 1977, 8, 433.
- 890. Frankowski, A. Tetrahedron 1986, 42, 1511.
- 891. Okada, J.; Nakano, K.; Miyake, H. Chem. Pharm. Bull. 1983, **31**, 3074.
- 892. Fossey, C.; Landelle, H.; Laduree, D.; Robba, M. Nucleosides & Nucleotides 1994, **13**, 925.
- 893. Fossey, C.; Landelle, H.; Laduree, D.; Robba, M. Nucleosides & Nucleotides 1993, **12**, 973.
- 894. Wamhoff, H.; Wambach, W.; Herrmann, S.; Jansen, M.; Brühne, B. J. Prakt. Chem./Chem.-Ztg. 1994, **336**, 129
- 895. Kawasaki, A. M.; Townsend, L. B. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.4; p. 298.
- 896. Schmidt, C. L.; Townsend, L. B. J. Chem. Soc., Perkin Trans. 1 1975, 13, 1257.
- 897. Voegel, J. J.; Altorfer, M. M.; Benner, S. A. Helv. Chim. Acta 1993, 76, 2061.
- 898. Kim, S.-H.; Bartholomew, D. G.; Allen, L. B.; Robins, R. K.; Revankar, G. R.; Dea, P. J. Med. Chem. 1978, **21**, 883.
- 899. Gagnier, R. P.; Halat, M. J.; Otter, B. A. J. Heterocycl. Chem. 1982, 19, 221.
- 900. Gagnier, R. P.; Halat, M. J.; Otter, B. A. J. Heterocycl. Chem. 1984, 21, 481.
- 901. Schmidt, C. L.; Townsend, L. B. J. Org. Chem. 1975, 40, 2476.
- 902. Nishiwaki, T.; Abe, N. J. Chem. Res. (S) 1984, 264.
- 903. Pfleiderer, W.; Schranner, M. Chem. Ber. 1971, 104, 1915.
- 904. Ritzmann, G.; Kiriasis, L.; Pfleiderer, W. Chem. Ber. 1980, 113, 1524.
- 905. Ritzmann, G.; Pfleiderer, W. Chem. Ber. 1973, 106, 1401.
- 906. Kobayashi, K.; Pfleiderer, W. Chem. Ber. 1976, 109, 3194.
- 907. Kaz'mina, E. M.; Kenbaeva, R. M.; Stepanenko, B. N. Zh. Obshch.
 Khim. 1978, 48, 1892 [Chem. Abstr. 1978, 89, 180287t].
- 908. Kaz'mina, E. M.; Fedorov, I. I.; Bezchinskii, Ya. E.; Kiseleva, N. V.; Novikov, N. A.; Galegov, G. A.; Arzamastsev, A. P. Khim.-Farm. Zh. 1989, **23**, 1217 [Chem. Abstr. 1990, **112**, 235744r].
- 909. Volpini, R.; Camaioni, E.; Vittori, S.; Barboni, L.; Lambertucci, C.; Cristalli, G. Helv. Chim. Acta 1998, 81, 145.
- 910. H ebabecký, H.; Holý, A. CS 274511, 1992 [Chem. Abstr. 1994, 120, 8932x].

- 911. David, S.; de Sennyey, G. J. Chem. Soc., Perkin Trans. 1 1982, 385.
- 912. Karpeiskii, M. Ya.; Mikhailov, S. N.; Padyukova, N. Sh.; Smrt, J. Nucleic Acids Res., Symp. Ser. 9 1981, 157.
- 913. Ollmann, J. E.; DePasquale, R. J. US 4898936, 1990 [Chem. Abstr. 1986, **105**, 227244t].
- 914. H ebabecký, H.; Holý, A. Collect. Czech. Chem. Commun. 1993, 58, 409.
- 915. H ebabecký, H.; Holý, A. Carbohyd. Res. 1991, **216**, 179.
- 916. Suami, T.; Sasai, H.; Matsuno, K. Chem. Lett. 1983, 819.
- 917. Hutzenlaub, W.; Kobayashi, K.; Pfleiderer, W. Chem. Ber. 1976, **109**, 3217.
- 918. Grouiller, A.; Chattopadhyaya, J. Heterocycles 1984, 21, 543.
- 919. Ben-Hattar, J.; Jiricny, J. J. Org. Chem. 1986, **51**, 3211.
- 920. Grouiller, A.; Chattopadhyaya, J. Acta Chem. Scand. Ser. B 1984, **38**, 367.
- 921. Lichtenthaler, F. W.; Ueno, T.; Voss, P. Bull. Chem. Soc. Jpn. 1974, 47, 2304.
- 922. Augustyns, K.; Van Aerschot, A.; Herdewijn, P. Bioorg. Med. Chem. Lett. 1992, 2, 945.
- 923. Tietze, L. F.; Krach, T.; Beller, M.; Arlt, M. Chem. Ber. 1991, **124**, 2019.
- 924. Tronchet, J. M. J.; Iznaden, M.; Barbalat-Rey, F.; Dhimane, H.; Ricca, A.; Balzarini, J.; De Clercq, E. Eur. J. Med. Chem. 1992, **27**, 555.
- 925. Schmidt, L.; Pedersen, E. B.; Nielsen, C. Acta Chem. Scand. 1994, 48, 215.
- 926. Jung, M. E.; Castro, C.; Gardiner, J. M. Tetrahedron Lett. 1991, **32**, 5717.
- 927. Wittenburg, E.; Etzold, G.; Langen, P. Chem. Ber. 1968, 101, 494.
- 928. Kline, P. C.; Serianni, A. S. J. Org. Chem. 1992, 57, 1772.
- 929. Jiang, X.-J.; Kalman, T. I. Nucleosides & Nucleotides 1994, 13, 379.
- 930. D'Sousa, R.; Kiss, J. EP 21231, 1981 [Chem. Abstr. 1981, 95, 62602t].
- 931. Beigelman, L. N.; Mikhailov, S. N. Carbohydr. Res. 1990, 203, 324.
- 932. Kawai, S. H.; Chin, J.; Just, G. Nucleosides & Nucleotides 1990, **9**, 1045.
- 933. Dueholm, K. L.; Motawia, M. S.; Pedersen, E. B.; Nielsen, C. Arch. Pharm. (Weinheim) 1992, **325**, 597.
- 934. Saischek, G.; Fuchs, F.; Dax, K.; Billiani, G. EP 450585, 1991 [Chem. Abstr. 1992, **116**, 41980b].
- 935. Maurins, J. A.; Paegle, R. A.; Lidaks, M. J.; Kvasyuk, E. I.;

Mikhailopulo, I. A. Bioorg. Khim. 1986, **12**, 1514 [Chem. Abstr. 1987, **107**, 176394y].

- 936. Casara, P. J.; Kenny, M. T.; Jund, K. C. Tetrahedron Lett. 1991, **32**, 3823.
- 937. Gautier, C.; Leroy, R.; Monneret, C.; Roger, P. Tetrahedron Lett. 1991, **32**, 3361.
- 938. Almond, M. R.; Collins, J. L.; Reitter, B. E.; Rideout, J. L.; Freeman, A.; St. Clair, M. H. Tetrahedron Lett. 1991, **32**, 5745.
- 939. Hansen, P.; Lau, J.; Pedersen, E. B.; Nielsen, C. M. Liebigs Ann. Chem. 1990, 1079.
- 940. Dionne, G.; WO 9303027, 1992 [Chem. Abstr. 1993, 119, 226345d].
- 941. Same as Ref. 940.
- 942. Belleau, B.; Nguyen, B. N. EP 515144, 1992 [Chem. Abstr. 1993, **118**, 169533s].
- 943. Bamford, M. J.; Humber, D. C.; Storer, R. Tetrahedron Lett. 1991, **32**, 271.
- 944. Evans, C. A.; Dixit, D. M.; Siddiqui, M. A.; Jin, H.; Tse, H. L. A.; Cimpoia, A.; Bednarski, K.; Breining, T.; Mansour, T. S. Tetrahedron Asymmetry 1993, **4**, 2319.
- 945. Siddiqui, M. A.; Brown, W. L.; Nguyen-Ba, N.; Dixit, D. M.; Mansour, T. S.; Hooker, E.; Viner, K. C.; Cameron, J. M. Bioorg. Med. Chem. Lett. 1993, 3, 1543.
- 946. Belleau, B-; Belleau, P. Nguyen-Ba, N. EP 382526, 1990 [Chem. Abstr. 1991, **114**, 43492b].
- 947. Barrett, A. G. M.; Lebold, S. A. J. Org. Chem. 1990, 55, 3853.
- 948. Hanna, N. B.; Joshi, R. V.; Larson, S. B.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1989, 26, 1835.
- 949. Ugarkar, B. G.; Cottam, H. B.; McKernan, P. A.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1984, 27, 1026.
- 949a. Depellier, J.; Granet, R.; Krausz, P.; Piekarski, S. Nucleosides & Nucleotides 1994, **13**, 1007.
- 950. Hanna, N. B.; Larson, S. B.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1990, **27**, 1713.
- 951. Revankar, G. R.; Hanna, N. B.; Imamura, N.; Lewis, A. F.; Larson, S. B.; Finch, R. A.; Avery, T. L.; Robins, R. K. J. Med. Chem. 1990, 33, 121.
- 952. Maurins, J. A.; Paegle, R. A.; Lídaks, M. J.; Kvasyuk, E. I.;
 Kuzmichkin, P. V.; Mikhailopulo, I. A. Nucleosides & Nucleotides 1986,
 5, 79.
- 953. Ozola, V.; Ramzaeva, N.; Maurinsh, Y.; Lidaks, M. Nucleosides &

Nucleotides 1993, 12, 827.

- 954. Kini, G. D.; Anderson, J. D.; Sanghvi, Y. S.; Lewis, A. F.; Smee, D. F.; Revankar, G. R.; Robins, R. K.; Cottam, H. B. J. Med. Chem. 1991, 34, 3006.
- 955. Al-Masoudi, N. A.; Pfleiderer, W. Tetrahedron 1993, 49, 7579.
- 956. Sztaricskai, F.; Gergely, L.; Szegedi, G.; Fachet, J.; Csernus, I.; Jancsó, S.; Marossy, K. WO 9015063, 1990 [Chem. Abstr. 1991, **115**, 9261m].
- 957. Nair, V.; Lyons, A. G.; Purdy, D. F. Tetrahedron 1991, **47**, 8949.
- 958. Akita, H.; Uchida, K.; Chen, C. Y.; Kato, K. Chem. Pharm. Bull. 1998, **46**, 1034.
- 959. Chida, N.; Koizumi, K.; Kitada, Y.; Yokoyama, C.; Ogawa, S. J. Chem. Soc., Chem. Commun. 1994, 111.
- 960. Wengel, J.; Lau, J.; Pedersen, E. B.; Nielsen, C. M. J. Org. Chem. 1991, **56**, 3591.
- 961. Wengel, J.; Lau, J.; Walczak, K.; Pedersen, E. B. Nucleosides & Nucleotides 1991, **10**, 405.
- 962. Classon, B. O.; Samuelsson, B. B.; Kvarnström, I. S. A.; Svansson, L. G.; Svensson, S. C. T. WO 9206102, 1992 [Chem. Abstr. 1993, **118**, 234419a].
- 963. Svansson, L.; Kvarnström, I.; Classon, B.; Samuelsson, B. Nucleosides & Nucleotides 1992, 11, 1353.
- 964. Abdel-Megied, A. E.-S.; Pedersen, E. B.; Nielsen, C. M. Synthesis 1991, 313.
- 965. El-Barbary, A. A.; Khodair, A. I.; Pedersen, E. B.; Nielsen, C. Nucleosides & Nucleotides 1994, **13**, 707.
- 966. Fedorov, I. I.; Bezchinskii, Ya. E.; Novikov, N. A.; Kaz'mina, E. M.; Rosenberg, S. G.; Mikhailov, S. N. Bioorg. Khim. 1990, **16**, 997 [Chem. Abstr. 1990, **113**, 212559r].
- 967. Abdel-Megied, A. E.-S.; Pedersen, E. B.; Nielsen, C. M. Monatsh. Chem. 1991, **122**, 59.
- 968. Abdel-Megied, A. E.-S.; Pedersen, H.; Pedersen, E. B.; Nielsen, C. Heterocycles 1993, **36**, 681.
- 969. Jung, M. E.; Gardiner, J. M. Tetrahedron Lett. 1992, 33, 3841.
- 970. Faury, P.; Camplo, M.; Charvet, A.-S.; Chermann, J.-C.; Kraus, J.-L. Nucleosides & Nucleotides 1992, **11**, 1481.
- 971. Vorbrüggen, H.; Strehlke, P.; US 3708469, 1969 [Chem. Abstr. 1970, **73**, 110084v].
- 972. Walczak, K.; Pedersen, E. B. Synthesis 1991, 959.
- 973. Monneret, C.; Florent, J.-C. Synlett 1994, 305.

- 974. Sells, T. B.; Nair, V. Tetrahedron Lett. 1993, 34, 3527.
- 975. Auberson, Y.; Vogel, P. Tetrahedron 1990, 46, 7019.
- 976. Aly, Y. L.; Abdel-Megied, A. E.-S.; Pedersen, E. B.; Nielsen, C. Liebigs Ann. Chem. 1992, 127.
- 977. Kim, C. U.; Misco, P. F.; Luh, B. Y.; Martin, J. C. Heterocycles 1990, 31, 1571.
- 978. Jeong, L. S.; Moon, H. R.; Yoo, S. J.; Lee, S. N.; Chun, M. W.; Lim, Y.-H. Tetrahedron Lett. 1998, **39**, 5201.
- 979. Visser, G. M.; Tromp, M.; van Westrenen, J.; Schipperus, O.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1986, **105**, 85.
- 980. Lau, J.; Wengel, J.; Pedersen, E. B.; Vestergaard, B. F. Synthesis 1991, 1183.
- 981. Shutalev; A. D.; Mikerin, I. E.; Arshava, B. M.; Nikitenko, A. A.; Raifeld, Y. E.; Vid, G. Y.; Lee, V. J.; Gurskaya, G. V.; Viktorova, L. S.; Jas'ko, M. V.; Semizarov, D. G.; Zavodnik, V. E. Bioorg. Med. Chem. Lett. 1994, 4, 761.
- 982. Yu, C.-F.; Soine, W. H.; Thomas, D. Med. Chem. Res. 1992, 2, 410.
- 983. Motawia, M. S.; Jacobsen, J. P.; Pedersen, E. B. Chem. Scr. 1989, **29**, 51.
- 984. Motawia, M. S.; Pedersen, E. B.; Suwinski, J.; Nielsen, C. M. Arch. Pharm. (Weinheim) 1990, **323**, 949.
- 985. Motawia, M. S.; Wengel, J.; Abdel-Megid, A. E.-S.; Pedersen, E. B. Synthesis 1989, 384.
- 986. Motawia, M. S.; Abdel-Megied, A. E.-S.; Pedersen, E. B.; Nielsen, C. M.; Ebbesen, P. Acta Chem. Scand. 1992, 46, 77.
- 987. Wengel, J.; Lau, J.; Pedersen, E. B. Synthesis 1989, 829.
- 988. Dunkel, M.; Pfleiderer, W. Nucleosides & Nucleotides 1993, 12, 125.
- 989. Dunkel, M.; Pfleiderer, W. Nucleosides & Nucleotides 1992, 11, 787.
- 990. Jenny, T. F.; Benner, S. A. Tetrahedron Lett. 1992, 33, 6619
- 991. Narasaka, K. personal communication, 1988.
- 992. Belleau, B.; Dixit, D.; Nguyen-Ba, N. EP 337713, 1989 [Chem. Abstr. 1990, **112**, 198359w].
- 993. Visser, G. M.; Schattenkerk, C.; van Boom, J. H. J. R. Neth. Chem. Soc. 1984, **103**, 165.
- 994. Visser, G. M.; Keemink, R.; Schattenkerk, C.; Kraal, B.; van Boom, J. H. Nucleosides & Nucleotides 1984, **3**, 277.
- 995. Lau, J.; Pedersen, E. B.; Nielsen, C. M. Acta Chem. Scand. 1991, **45**, 616.
- 996. Hertel, L. W. EP 0122707, 1987 [Chem. Abstr. 1985, 102, 113894n].
- 997. Wittenburg, E. Chem. Ber. 1968, **101**, 2132.

- 998. Wittenburg, E. Chem. Ber. 1968, 101, 1614.
- 999. Pérez-Pérez, M. J.; San-Félix, A.; Balzarini, J.; De Clercq, E.; Camarasa, M. J. J. Med. Chem. 1992, **35**, 2988.
- 1000. Tjarks, W.; Anisuzzaman, A. K. M.; Soloway, A. H. Nucleosides & Nucleotides 1992, **11**, 1765.
- 1001. Chou, T.-S.; Heath, P. C.; Patterson, L. E. EP 306190, 1989 [Chem. Abstr. 1989, **111**, 134693x].
- 1002. Motawia, M. S.; El-Torgoman, A. M.; Pedersen, E. B. Liebigs Ann. Chem. 1991, 879.
- 1003. Hjuler-Nielsen, H. P.; Motawia, M. S.; Pedersen, E. B.; Nielsen, C. Bull. Soc. Chim. Fr. 1992, **129**, 523.
- 1004. Beigel'man, L. N.; Karpeiskii, M. Ya.; Mikhailov, S. N. Bioorg. Khim. 1986, **12**, 1359 [Chem. Abstr. 1987, **107**, 176391v].
- 1005. Griengl, H.; Bodenteich, M.; Hayden, W.; Wanek, E.; Streicher, W.; Stütz, P.; Bachmayer, H.; Ghazzouli, I.; Rosenwirth, B. J. Med. Chem. 1985, 28, 1679.
- 1006. Griengl, H.; Hayden, W.; Schwarz, W.; Bachmayer, H.; Rosenwirth, B. Eur. J. Med. Chem. Chim. Ther. 1985, **20**, 105.
- 1007. Haas, A.; Lieb, M.; Steffens, B. J. Fluorine Chem. 1992, 56, 55.
- 1008. Haas, A.; Lieb, M.; Steffens, B. Chimia 1989, 43, 98.
- 1009. Kasnar, B.; Wise, D. S.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. Nucleosides & Nucleotides 1994, **13**, 459.
- 1010. Tarussova, N. B.; Dyatkina, N. B.; v. Janta-Lipinski, M.; Langen, P. Z. Chem. 1987, **27**, 366.
- 1011. Svansson, L.; Kvarnström, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1991, **56**, 2993.
- 1012. Kvarnstöm, I.; Svansson, L.; Svensson, C.; Svensson, S. C. T. Nucleosides & Nucleotides 1992, 11, 1367.
- 1013. Chen, A.; Savage, I.; Thomas, E. J.; Wilson, P. D. Tetrahedron Lett. 1993, **34**, 6769.
- 1014. Garner, P.; Park, J. M. Tetrahedron Lett. 1989, 30, 5065.
- 1015. Cao, X.; Matteucci, M. D. Bioorg. Med. Chem. Lett. 1994, 4, 807.
- 1016. Brånalt, J.; Kvarnström, I.; Niklasson, G.; Svensson, S. C. T.; Classon, B.; Samuelson, B. J. Org. Chem. 1994, **59**, 1783.
- 1017. El-Barbary, A. A.; Khodair, A. I.; Pedersen, E. B. J. Org. Chem. 1993, **58**, 5994.
- 1018. El-Barbary, A. A.; Khodair, A. I.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1994, **125**, 593.
- 1019. Kikuchi, Y.; Kurata, H.; Nishiyama, S.; Yamamura, S.; Kato, K. Tetrahedron Lett. 1997, **38**, 4795.

- 1019a. Follmann, M.; Kunz, H. Synlett 1998, 989.
- 1020. Dueholm, K. L.; Aly, Y. L.; Jørgensen, P. T.; El-Barbary, A. A.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1993, **124**, 37.
- 1021. Kim, H. O.; Ahn, S. K.; Alves, A. J.; Beach, J. W.; Jeong, L. S.; Choi, B. G.; Van Roey, P.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 1992, 35, 1987.
- 1022. Chu, C. K.; Ahn, S. K.; Kim, H. O.; Beach, J. W.; Alves, A. J.; Jeong, L. S.; Islam, Q.; Van Roey, P.; Schinazi, R. F. Tetrahedron Lett. 1991, 32, 3791.
- 1023. Jeong, L. S.; Schinazi, R. F.; Beach, J. W.; Kim, H. O.; Nampalli, S.; Shanmuganathan, K.; Alves, A. J.; McMillan, A.; Chu, C. K.; Mathis, R. J. Med. Chem. 1993, **36**, 181.
- 1024. Jeong, L. S.; Alves, A. J.; Carrigan, S. W.; Kim, H. O.; Beach, J. W.; Chu, C. K. Tetrahedron Lett. 1992, **33**, 595.
- 1025. Chu, C. K.; Beach, J. W.; Jeong, L. S.; Choi, B. G.; Comer, F. I.; Alves, A. J.; Schinazi, R. F. J. Org. Chem. 1991, **56**, 6503.
- 1026. Abdel-Megied, A. E.-S.; Hansen, P.; Pedersen, E. B.; Nielsen, C. M. Acta Chem. Scand. 1991, **45**, 1060.
- 1027. Kjærsgaard, U.; Pedersen, E. B.; Nielsen, C.; El-Torgoman, A. M. Acta Chem. Scand. 1992, **46**, 1016.
- 1028. Abdel-Megied, A. E.-S.; Hansen, P.; Pedersen, E. B.; Nielsen, C.; Nielsen, C. M. Arch. Pharm. (Weinheim) 1993, **326**, 377.
- 1029. Cao, X.; Pfleiderer, W. Nucleosides & Nucleotides 1994, 13, 773.
- 1030. Tseng, C. K.-H.; Marquez, V. E.; Milne, G. W. A.; Wysocki, Jr., R. J.; Mitsuya, H.; Shirasaki, T.; Driscoll, J. S. J. Med. Chem. 1991, **34**, 343.
- 1031. Benhaddou, R.; Czernecki, S.; Valéry, J. M.; Bellosta, V. Bull. Soc. Chim. Fr. 1991, **127**, 108.
- 1032. Agyei-Aye, K.; Baker, D. C. Carbohydr. Res. 1988, **183**, 261.
- 1033. Kasnar, B.; Skaric, V.; Klaic, B.; Zinic, M. Tetrahedron Lett. 1993, **34**, 4997.
- 1034. Raju, N.; Smee, D. F.; Robins, R. K.; Vaghefi, M. M. J. Med. Chem. 1989, **32**, 1307.
- 1035. Lau, J.; Walczak, K.; Pupek, K.; Buch, C.; Nielsen, C. M.; Pedersen, E.B. Arch. Pharm. (Weinheim) 1991, **324**, 953.
- 1036. Cheeseman, G. W. H.; Freestone, A. J.; Godwin, R. A.; Hough, T. L. J. Chem. Soc., Perkin Trans. 1 1975, 1888.
- 1037. Herdewijn, P.; Van Aerschot, A.; Busson, R.; Claes, P.; De Clercq, E. Nucleosides & Nucleotides 1991, **10**, 1525.
- 1038. Herdewijn, P.; Van Aerschot, A.; Balzarini, J.; De Clercq, E.

Nucleosides & Nucleotides 1991, 10, 119.

- 1039. loannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. Nucleosides & Nucleotides 1992, **11**, 1205.
- 1040. Hayakawa, H.; Miyazawa, M.; Tanaka, H.; Miyasaka, T. Nucleosides & Nucleotides 1994, **13**, 297.
- 1041. Buchanan, J. G.; McCaig, A. E.; Wightman, R. H. J. Chem. Soc. Perkin Trans 1 1990, 955.
- 1042. Wyss, P.-C. EP 004 261, 1982 [Chem. Abstr. 1980, 92, 147135f].
- 1043. Vorbrüggen, H. DE 2508312, 1976 [Chem. Abstr. 1977, 86, 5772p].
- 1044. Sanghvi, Y. S.; Bhattacharya, B. K.; Kini, G. D.; Matsumoto, S. S.; Larson, S. B.; Jolley, W. B.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1990, **33**, 336.
- 1045. Mao, D. T.; Driscoll, J. S.; Marquez, V. E. J. Med. Chem. 1984, **27**, 160.
- 1046. McNamara, D. J.; Cook, P. D.; Allen, L. B.; Kehoe, M. J.; Holland, C. S.; Teepe, A. G. J. Med. Chem. 1990, **33**, 2006.
- 1047. Franchetti, P.; Cappellacci, L.; Cristalli, G.; Grifantini, M.; Vittori, S. Nucleosides & Nucleotides 1991, **10**, 543.
- 1048. Visser, G. M.; van Westrenen, J.; van Boeckel, C. A. A.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1986, **105**, 528.
- 1049. Wood, S. G.; Dalley, N. K.; George, R. D.; Robins, R. K.; Revankar, G. R. J. Org. Chem. 1984, **49**, 3534.
- 1050. Sharma, M.; Bloch, A.; Bobek, M. Nucleosides & Nucleotides 1993, 12, 643.
- 1051. Cuny, E.; Lichtenthaler, F. W.; Jahn, U. Chem. Ber. 1981, 114, 1624.
- 1052. Ikehara, M.; Inaoka, T. Nucleosides & Nucleotides 1985, 4, 515.
- 1053. Abdelal, A. M.; El-Emam, A. A.; Moustafa, M. A. J. Chin. Chem. Soc. (Taipei) 1992, **39**, 39 [Chem. Abstr. 1992, **117**, 131484t].
- 1054. Hijazi, A. Nucleosides & Nucleotides 1988, 7, 537.
- 1055. Cottam, H. B.; Petrie, C. R.; McKernan, P. A.; Goebel, R. J.; Dalley, N. K.; Davidson, R. B.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1984, **27**, 1119.
- 1056. Bontems, R. J.; Anderson, J. D.; Smee, D. F.; Jin, A.; Alaghamandan, H. A.; Sharma, B. S.; Jolley, W. B.; Robins, R. K.; Cottam, H. B. J. Med. Chem. 1990, **33**, 2174
- 1057. Kini, G. D.; Hennen, W. J.; Robins, R. K. Nucleosides & Nucleotides 1987, 6, 581.
- 1058. Nagahara, K.; Anderson, J. D.; Kini, G. D.; Dalley, N. K.; Larson, S. B.;

Smee, D. F.; Jin, A.; Sharma, B. S.; Jolley, W. B.; Robins, R. K.; Cottam, H. B. J. Med. Chem. 1990, **33**, 407.

- 1058a. Kim, H. O.; Ji, X-D.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. J. Med. Chem. 1994, **37**, 4020.
 - 1059. Al-Masoudi, N. A.; Pfleiderer, W. Nucleosides & Nucleotides 1989, 8, 1485.
 - 1060. Al-Masoudi, N. A. L.; Pfleiderer, W. Pteridines 1990, 2, 9.
- 1061. Kawai, S. H.; Just, G. Nucleosides & Nucleotides 1991, 10, 1485.
- 1062. Földesi, A.; Nilson, F. P. R.; Glemarec, C.; Gioeli, C.; Chattopadhyaya, J. Tetrahedron 1992, **48**, 9033.
- 1063. Yasumoto, S.; Matsumoto, H.; Tada, Y.; Kobayashi, K.; Noguchi, K. JP 62187483, 1987 [Chem. Abstr. 1988, **108**, 56547z].
- 1064. Pudlo, J. S.; Townsend, L. B. Tetrahedron Lett. 1990, 31, 3101.
- 1065. Nord, L. D.; Dalley, N. K.; McKernan, P. A.; Robins, R. K. J. Med. Chem. 1987, **30**, 1044.
- 1066. Walczak, K.; Pupek, K.; Pedersen, E. B. Liebigs Ann. Chem. 1991, 1041.
- 1067. Kojima, A.; Kono, Y.; Ike, Y.; Yokoyama, T.; Odate, M. DE 2656604, 1977 [Chem. Abstr. 1977, **87**, 13539b].
- 1068. Lerner, L. M. J. Org. Chem. 1978, 43, 2469.
- 1069. Bobek, M.; Bloch, A. J. Med. Chem. 1972, 15, 164.
- 1070. Camplo, M.; Faury, P.; Charvet, A.-S.; Lederer, F.; Chermann, J.-C.; Kraus, J.-L. Nucleosides & Nucleotides 1993, **12**, 631.
- 1071. Pravdic, N.; Franjic-Mihalic, I. Carbohydr. Res. 1978, 62, 301.
- 1072. Tronchet, J. M. J.; Tronchet, J. Carbohydr. Res. 1977, 59, 594.
- 1072a. Rosowsky, A.; Lazarus, H.; Yamashita, A. J. Med. Chem. 1976, **19**, 1265.
- 1073. Bobek, M.; Tuntiwachwuttikul, P.; Ismail, M. M.; Bardos, T. J. Nucleosides & Nucleotides 1991, **10**, 1657.
- 1074. Lerner, L. M. J. Org. Chem. 1978, 43, 962.
- 1075. Lerner, L. M. Carbohydr. Res. 1977, 53, 177.
- 1076. Lerner, L. M. J. Org. Chem. 1979, 44, 4359.
- 1077. Szarek, W. A.; Ritchie, R. G. S.; Vyas, D. M. Carbohydr. Res. 1978, 62, 89.
- 1078. Ritchie, R. G. S.; Vyas, D. M.; Szarek, W. A. Can. J. Chem. 1978, **56**, 794.
- 1079. Lerner, L. M. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, **Vol.4**; p. 274.
- 1080. Steinmaus, H. DE 2226673, 1973 [Chem. Abstr. 1974, 80, 60154q].

- 1081. Hamilton, H. W.; Bristol, J. A. J. Med. Chem. 1983, 26, 1601.
- 1082. de la Cruz, A.; Goya, P.; Martinez, A.; Paez, J. A. Nucleosides & Nucleotides 1990, **9**, 69.
- 1083. Goya, P.; Martinez, A. Arch. Pharm. (Weinheim) 1988, 321, 99.
- 1084. Kiriasis, L.; Pfleiderer, W. Nucleosides & Nucleotides 1989, 8, 1345.
- 1085. Goya, P.; Martinez, A.; Jimeno, M. L.; Pfleiderer, W. Liebigs Ann. Chem. 1986, 1872.
- 1086. Avasthi, K.; Deo, K., Garg, N.; Bhakuni, D. S. Bioorg. Med. Chem. Lett. 1991, **1**, 249.
- 1087. Misra, S.; Jain, S.; Avasthi, K.; Bhakuni, D. S. Nucleosides & Nucleotides 1990, **9**, 837.
- 1088. Goya, P.; Martinez, A.; Jimeno, M. L. J. Chem. Soc., Perkin Trans. 2 1990, 783.
- 1089. Cuberta, A.; Jimeno, M. L.; Ochoa, C. Nucleosides & Nucleotides 1987, **6**, 831.
- 1090. Azmy, B.; Fernández-Resa, P.; Goya, P.; Nieves, R.; Ochoa, C.; Stud, M.; Jimeno, M. L. Nucleosides & Nucleotides 1984, 3, 325.
- 1091. Goya, P.; Martinez, A.; Jimeno, M. L.; Pfleiderer, W. Liebigs Ann. Chem. 1987, 961.
- 1092. Mishra, A.; Pratap, R.; Bhakuni, D. S. Indian J. Chem. 1987, **26B** , 847.
- 1093. Anderson, J. D.; Cottam, H. B.; Larson, S. B.; Nord, L. D.; Revankar, G. R.; Robins, R. K. J. Heterocyl. Chem. 1990, 27, 439.
- 1094. Tripathi, R. P.; Hasan, A.; Pratap, R.; Bhakuni, D. S. Indian J. Chem. 1987, **26B**, 851.
- 1095. Anderson, J. D.; Dalley, N. K.; Revankar, G. R.; Robins, R. K. J. Heterocycl. Chem. 1986, **23**, 1869.
- 1096. Kazimierczuk, Z.; Pfleiderer, W. Liebigs Ann. Chem. 1982, 754.
- 1097. Lutz, H.; Pfleiderer, W. Carbohydr. Res. 1984, **130**, 179.
- 1098. Harris, R.; Pfleiderer, W. Liebigs Ann. Chem. 1981, 1457.
- 1099. Goya, P.; Pfleiderer, W. Chem. Ber. 1981, 114, 699.
- 1100. lenaga, K.; Pfleiderer, W. Chem. Ber. 1978, 111, 2586.
- 1101. Schmidt, R. R.; Michel, J. J. Carbohydr. Chem. 1985, 4, 141.
- 1102. Farina V.; Benigni, D. A. Tetrahedron Lett. 1988, 29, 1239.
- 1103. Kondo, T.; Nakai, H.; Goto, T. Tetrahedron Lett. 1972, 19, 1881.
- 1104. Suzuki, T.; Sakaguchi, S.; Myata, Y.; Mori, T. JP 01139596, 1989 [Chem. Abstr. 1990, **112**, 36386a].

- 1105. Hambalek, R. J.; Just, G. Nucleosides & Nucleotides 1992, 11, 1539.
- 1106. Humber, D. C.; Jones, M. F.; Payne, J. J.; Ramsay, M. V. J.; Zacharie, B.; Jin, H.; Siddiqui, A.; Evans, C. A.; Tse, H. L. A.; Mansour, T. S. Tetrahedron Lett. 1992, **33**, 4625.
- 1107. Kojima, E.; Yoshioka, H.; Murakami, K. JP 03255083, 1991 [Chem. Abstr. 1992, **116**, 106703k].
- 1108. Mann, J.; Weymouth-Wilson, A. Synlett 1992, 67.
- 1109. Noyori, R.; Hayashi, M. JP 62267294, 1987 [Chem. Abstr. 1988, **109**, 6905q].
- 1110. Cristescu, C.; Supuran, C. Rev. Roum. Chim. 1987, **32**, 32 [Chem. Abstr. 1988, **108**, 112880s].
- 1111. Tocik, Z.; Earl, R. A.; Beranek, J. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, Vol.4, p. 105.
- 1111a. Kobylinskaya, V. I.; Dashevskaya, T. A.; Shalamai, A. S.; Suleimanov, S. P.; Kharchuk, A. N.; Protopopova, G. V. Khim.-Farm. Zh. 1987, 21, [Chem. Abstr. 1988, 108, 112876v].
- 1112. Itoh, T.; Pfleiderer, W. Chem. Ber. 1976, 109, 3228.
- 1113. Hakimelahi, G. H.; Khalafi-Nezhad, A. Helv. Chim. Acta 1989, **72**, 1495.
- 1114. Hasan, A.; Knapp, Jr., F. F.; Kilbourn, M. R.; Buchsbaum, D. J. J. Heterocycl. Chem. 1993, **30**, 1351.
- 1115. Ogawa, T.; Takaku, H.; Yamamoto, N. Nucleosides & Nucleotides 1989, **8**, 499.
- 1116. Earl, R. A.; Townsend, L. B. J. Heterocycl. Chem. 1972, 9, 1141.
- 1117. Manning, S. J.; Cohen, A. M.; Townsend, L. B. J. Labelled Comp. Radiopharm. 1978, **15**, 723.
- 1118. Hillers, S.; Lidaks, M.; Zhuk, R. A.; Berzina, A.; Pecs, K.; Getsova, I.
 N.; Bruk, E. I. Khim. Geterotsikl. Soedin. 1969, 2, 2 [Chem. Abstr. 1969, 71, 30436e].
- 1119. Al-Masoudi, N. A.; Pfleiderer, W.; Al-Masoudi, W. A. Nucleosides & Nucleotides 1993, **12**, 675.
- 1120. Crisp, G. T.; Flynn, B. L. Tetrahedron 1993, 49, 5873.
- 1121. Levesque, D. L.; Wang, E.-C.; Wei, D.-C.; Tzeng, C.-C.; Panzica, R. P.; Naguib, F. N. M.; el Kouni, M. H. J. Heterocycl. Chem. 1993, **30**, 1399
- 1122. Han, C. H.; Chen, Y. L.; Tzeng, C. C. Nucleosides & Nucleotides 1991, **10**, 1391.
- 1123. Kobayashi, K.; Sone, T.; Suzuki, N.; Wakabayashi, M.; Sowa, T. JP

52036673, 1977 [Chem. Abstr. 1977, 87, 135387y].

- 1124. Marunaka, T.; Yasumoto, M.; Hashimoto, S.; Harima, K.; Suzue, T. JP 105673, 1975 [Chem. Abstr. 1976, **84**, 59543s].
- 1125. Kurono, M.; Unno, R.; Kimura, H.; Ozawa, H.; Mitani, T.; Shiromori, T.; Koketsu, M.; Michishita, H.; Sawai, K. EP 280 841, 1988 [Chem. Abstr. 1989, **111**, 96984h].
- 1126. Kaneko, C.; Hara, S.; Matsumoto, H.; Takeuchi, T.; Mori, T.; Ikeda, K.; Mizuno, Y. Chem. Pharm. Bull. 1991, **39**, 871.
- 1127. Beauchamp, L. M.; Krenitsky, T. A. EP 203736, 1986 [Chem. Abstr. 1987, **106**, 67010d].
- 1128. Watanabe, K. A.; Su, T.-L.; Klein, R. S.; Chu, C. K.; Matsuda, A.; Chun, M. W.; Lopez, C.; Fox, J. J. J. Med. Chem. 1983, **26**, 152.
- 1129. Winkelmann, E.; Winkler, I. EP 298467, 1989 [Chem. Abstr. 1989, **111**, 7146w].
- 1130. Lee, K.-H.; Chen, Y.-L.; Huang, B.-R.; Tzeng, C.-C.; Zhu, Q.-Y.; Chou, T.-C. Nucleosides & Nucleotides 1991, **10**, 1407.
- 1131. Bravo, P.; Resnati, G.; Viani, F. Tetrahedron 1993, **49**, 713.
- 1132. Chu, S. H.; Weng, Z-Y.; Chen, Z. H.; Rowe, E. C.; Chu, E.; Naguib, F. N. M.; el Kouni, M. H.; Cha, S.; Chu, M. Y. Nucleosides & Nucleotides 1988, 7, 91.
- 1133. Nedorezova, T. P.; Melnik, S. Ya.; Preobrazhenskaya, M. N. Bioorg, Khim. 1976, **2**, 2 [Chem. Abstr. 1977, **86**, 55653w].
- 1134. Lee, W. W.; Martinez, A. P.; Goodman, L.; Henry, D. W. J. Org. Chem. 1972, **37**, 2923.
- 1135. Bravo, P; Resnati, G.; Fiorenza, C.; Viani, F. Gazz. Chim. Ital. 1992, **122**, 493.
- 1136. Ford, Jr., H.; Driscoll, J. S.; Siddiqui, M.; Kelley, J. A.; Mitsuya, H.; Shirasaka, T.; Johns, D. G.; Marquez, V. E. Nucleosides & Nucleotides 1994, **13**, 213.
- 1137. Kawakami, H.; Koseki, Y.; Ehata, T.; Matsushita, H.; Ito, K.; Naoi, Y. JP 3215484, 1991 [Chem. Abstr. 1992, **116**, 84116s].
- 1138. Abushanab, E.; Sarma, M. S. P. J. Med. Chem. 1989, 32, 76.
- 1139. Dziewiszek, K.; Schinazi, R. F.; Chou, T.-C.; Su, T.-L.; Dzik, J. M.; Rode, W.; Watanabe, K. A. Nucleosides & Nucleotides 1994, **13**, 77.
- 1140. Montgomery, J. A.; Secrist III, J. A. US 5034518, 1991 [Chem. Abstr. 1991, **115**, 9260k].
- 1141. Reichman, U.; Watanabe, K. A.; Fox, J. J. Carbohydr. Res. 1975, **42**, 233.
- 1142. Shimizu, B.; Saito, A. Agr. Biol. Chem. 1969, 33, 119.

- 1143. Wittenburg, E. Collect. Czech. Chem. Commun. 1971, 36, 246.
- 1144. Pfleiderer, W.; Autenrieth, D.; Schranner, M. Chem. Ber. 1973, **106**, 317.
- 1145. Cichy, A. F.; Saibaba, R.; El Subbagh, H. I.; Panzica, R. P.; Abushanab, E. J. Org. Chem. 1991, **56**, 4653.
- 1146. Schneider, K. C.; Benner, S. A. J. Am. Chem. Soc. 1990, 112, 453.
- 1147. Martin, J. C.; Jeffrey, G. A.; McGee, D. P. C.; Tippie, M. A.; Smee, D. F.; Matthews, T. R.; Verheyden, J. P. H. J. Med. Chem. 1985, **28**, 358.
- 1148. Lin, T.-S.; Liu, M.-C. J. Med. Chem. 1985, 28, 971.
- 1149. Ashton, W. T.; Canning, L. F.; Reynolds, G. F.; Tolman, R. L.; Karkas, J. D.; Liou, R.; Davies, M.-E. M.; DeWitt, C. M.; Perry, H. C.; Field, A. K. J. Med. Chem. 1985, **28**, 926.
- 1150. Ito, K.; Kaihara, H.; Kawakami, H.; Ebata, T. JP 0559088, 1993 [Chem. Abstr. 1993, **119**, 96075c].
- 1150a. Teijin, Ltd. JP 6023395, 1985 [Chem. Abstr. 1986, 104, 6144n].
- 1151. Teijin, Ltd. JP 6023397, 1985 [Chem. Abstr. 1986, 104, 6142k].
- 1152. Trehan, S. B.; MacDiarmid, J. E.; Bardos, T. J. Nucleosides & Nucleotides 1994, **13**, 235.
- 1153. Otvös, L.; Rakoczi, J.; Szabolcs, A.; Sagi, J.; Dékany, G.; Szemzo, A.; Gruber, L.; Nagy, G.; Nagy, J.; Ivan, P.; Tüdos, H. EP 543404, 1993 [Chem. Abstr. 1993, **119**, 271637m].
- 1154. Gauri, K. K. GB 1170565, 1969 [Chem. Abstr. 1970, 72, 79425k].
- 1155. Ryan, K. J.; Acton E. M.; Goodman, L. US 3531464, 1970 [Chem. Abstr. 1971, **74**, 42597h].
- 1156. Dipple, A.; Heidelberger, C. J. Med. Chem. 1966, 9, 715.
- 1157. Ferguson, A. S. EP 14597, 1980 [Chem. Abstr. 1980, 93, 241264q].
- 1158. Mansuri, M. M.; Ghazzouli, I.; Chen, M. S.; Howell, H. G.; Brodfuehrer, P. R.; Benigni, D. A.; Martin, J. C. J. Med. Chem. 1987, **30**, 867.
- 1159. Marquez, V.; Driscoll, J.; Tseng, C. K. H. US 3288652, 1990 [Chem. Abstr. 1990, **113**, 126590n].
- 1160. Herdewijn, P.; Van Aerschot, A. Nucleosides & Nucleotides 1989, 8, 933.
- 1161. Lin, T.-S. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, **Vol.4**; p. 73.
- 1162. Dyson, M. R.; Coe, P. L.; Walker, R. T. J. Med. Chem. 1991, 34, 2782.
- 1163. Vemishetti, P.; Saibaba, R.; Panzica, R. P. Abushanab, E. J. Med.

Chem. 1990, **33**, 681.

- 1164. Vemishetti, P.; Leiby, R. W.; Abushanab, E.; Panzica, P. J. Heterocycl. Chem. 1988, **25**, 651.
- 1165. Vemishetti, P.; Abushanab, E.; Leiby, R. W.; Panzica, R. P. Nucleosides & Nucleotides 1989, **8**, 201.
- 1166. Azymah, M.; Chavis, C.; Lucas, M.; Imbach, J.-L. Tetrahedron Lett. 1989, **30**, 6165.
- 1167. Bhan, A.; Hosmane, R. S. Nucleosides & Nucleotides 1992, 11, 1175.
- 1168. Shinozuka, K.; Hirota, Y.; Morita, T.; Sawai, H. Heterocycles 1992, **34**, 2117.
- 1169. Shinozuka, K.; Morita, T.; Hirota, Y.; Sawai, H. Chem. Lett. 1991, 1941.
- 1170. Urata, H.; Ogura, E.; Shinohara, K.; Ueda, Y.; Akagi, M. Nucleic Acids Res. 1992, **20**, 3325.
- 1171. Williamson, J. R.; Boxer, S. G. Nucleic Acids Res. 1988, 16, 1529.
- 1172. Basnak, I.; Balkan, A.; Coe, P. L.; Walker, R. T. Nucleosides & Nucleotides 1994, **13**, 177.
- 1173. Ryan, K. J.; Acton, E. M.; Goodman, L. J. Org. Chem. 1966, **31**, 1181.
- 1174. Mertes, M. P.; Shipchandler, M. T. J. Heterocycl. Chem. 1971, 8, 133.
- 1175. Jones, A. S.; Walker, R. T.; Barr, P. J.; De Clercq, E. DE 2915254, 1979 [Chem. Abstr. 1980, **92**, 181586p].
- 1176. Lin, P. K. T.; Brown, D. M. Nucleic Acids Res. 1989, 17, 10373.
- 1177. Gupta, V. S.; Bubbar, G. L. Can. J. Chem. 1971, 49, 719.
- 1177a. Griengl, H.; Hayden, W.; Schwarz, W.; Bachmeyer, H.; Rosenwirth, B. Eur. J. Med. Chem., Chim. Ther. 1985, **20**, 105.
- 1178. Stout, M. G.; Robins, R. K. J. Heterocycl. Chem. 1972, 9, 545.
- 1179. Tong, G. L.; Lee, W. W.; Goodman, L. J. Heterocycl. Chem. 1966, **3**, 226.
- 1180. Basnak, I.; Coe, P. L.; Walker, R. T. Nucleosides & Nucleotides 1994, 13, 163.
- 1181. Azymah, M.; Chavis, C.; Lucas, M.; Imbach, J.-L. J. Chem. Soc., Perkin Trans. 1 1991, 1561.
- 1182. Okabe, M.; Sun, R.-C.; Zenchoff, G. B. J. Org. Chem. 1991, 56, 4392.
- 1183. Spassova, M. K.; Holý, A.; Masojídková, M. Collect. Czech. Chem. Commun. 1986, **51**, 1512.
- 1184. Kim, C.-H.; Marquez, V. E. J. Org. Chem. 1987, **52**, 1979.

- 1185. Kassou, M.; Castillon, S. J. Org. Chem. 1997, 62, 3696.
- 1186. Miyai, K.; Tolman, R. L.; Robins, R. K.; Cheng, C. C. J. Med. Chem. 1978, **21**, 427.
- 1187. Holý, A. Collect. Czech. Chem. Commun. 1977, 42, 902.
- 1188. Eistetter, K.; Pfleiderer, W. Chem. Ber. 1976, 109, 3208.
- 1189. Cheriyan, U. O.; Ogilvie, K. K. Nucleosides & Nucleotides 1982, 1, 233.
- 1190. Uteza, V.; Chen, G.-R.; Tuoi, J. L. Q.; Descotes, G.; Fenet, B.; Grouiller, A. Tetrahedron 1993, **49**, 8579.
- 1191. Matsumoto, H.; Kaneko, C.; Mori, T.; Mizuno, Y. Chem. Pharm. Bull. 1989, **37**, 229.
- 1192. Gagnieu, C. H.; Guiller, A.; Pacheco, H. Carbohydr. Res. 1988, **180**, 233.
- 1193. Suzuki, T.; Sakaguchi, M.; Miyata, Y.; Mori, T. EP 312858 [Chem. Abstr. 1989, **111**, 174101j].
- 1194. Revankar, G. R.; Townsend, L. B. J. Heterocycl. Chem. 1968, 5, 477.
- 1195. Nishimura, T.; Shimizu, B. Chem. Pharm. Bull. 1965, 13, 803.
- 1196. Wright, J. A.; Taylor, N. F.; Fox, J. J. J. Org. Chem. 1969, **34**, 2632.
- 1197. Sanghvi, Y. S.; Hanna, N. B.; Larson, S. B.; Fujitaki, J. M.; Willis, R. C.; Smith, R. A.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1988, 31, 330.
- 1198. Hamilton, H. W.; Bristol, J. A.; Moos, W.; Trivedi, B. K.; Taylor, M.; Patt, W. C. EP 181129, 1986 [Chem. Abstr. 1986, **105**, 79310u].
- 1199. Robins, M. J.; Robins, R. K. J. Am. Chem. Soc. 1965, 87, 4934.
- 1200. Akhrem, A. A.; Garbuz, N. I.; Kvasyuk, E. I.; Mikhailopulo, I. A.;
 Pupeiko, N. E. Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 1977, 4,
 4 [Chem. Abstr. 1978, 88, 7277w].
- 1201. Akhrem, A. A.; Kvasyuk, E. I.; Mikhailopulo, I. A.; Pupeiko, N. E. Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 1978, 6, 6 [Chem. Abstr. 1979, 90, 152528z].
- 1202. Barascut, J.-L.; Kam, B.; Imbach, J.-L. Bull. Soc. Chim. Fr. 1976, 1983.
- 1203. Andersen, J.; Andreassen, E. S.; Pedersen, E. B. Acta Chem. Scand. 1987, **B 41**, 473.
- 1204. Honjo, M.; Imai, K. US 3380996, 1968 [Chem. Abstr. 1967, **67**, 108955n].
- 1205. Kazimierczuk, Z.; Lönnberg, H.; Vilpo, J.; Pfleiderer, W. Nucleosides & Nucleotides 1989, 8, 599.

- 1206. Holý, A. Collect. Czech. Chem. Commun. 1979, 44, 2846.
- 1207. Sekiya, M.; Yoshino, T.; Tanaka, H.; Ishido, Y. Bull. Chem. Soc. Jpn. 1973, **46**, 556.
- 1208. Boryski, J.; Ostrowski, T.; Golankiewicz, B. Nucleosides & Nucleotides 1989, **8**, 1271.
- 1209. Hara, S.; Kaneko, C.; Matsumoto, H.; Nishino, T.; Takeuchi, T.; Mori, T.; Mizuno, Y.; Ikeda, K. Nucleosides & Nucleotides 1992, **11**, 571.
- 1210. Wolfrom, M. L.; Bhat, H. B.; Conigliaro, P. J. Carbohydr. Res. 1971, **20**, 375.
- 1210a. McChesney, J. D.; Buchman, R. Heterocycles 1976, 4, 1065.
- 1211. Bräuniger, H.; Koine, A. Arch. Pharm. (Weinheim) 1965, 298, 41.
- 1212. Stevens, C. L.; Radhakrishnan, R.; Pillai, P. M. J. Carbohydr., Nucleosides, Nucleotides 1976, **3**, 71.
- 1213. Bräuniger, H.; Koine, A. Arch. Pharm. (Weinheim) 1963, 296, 668.
- 1214. Bräuniger, H.; Koine, A. Arch. Pharm. (Weinheim) 1963, 296, 665.
- 1215. Bräuniger, H.; Koine, A. Arch. Pharm. (Weinheim) 1965, 298, 712.
- 1216. Motawia, M. S.; Pedersen, E. B. Chem. Scr. 1988, 28, 339.
- 1217. Tuntiwachwuttikul, P.; Bardos, T. J.; Bobek, M. J. Heterocycl. Chem. 1991, **28**, 1131.
- 1218. Szerkes, G. L.; Robins, R. K. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1986, Vol.3; p. 131.
- 1219. Shen, T. Y.; Ruyle, W. V.; Bugianesi, R. L. J. Heterocycl. Chem. 1965, **2**, 495.
- 1220. van Steen, R. US 3352849, 1968 [Chem. Abstr. 1968, 68, 3158].
- 1221. Shiau, G. T.; Prusoff, W. H. Carbohydr. Res. 1978, 62, 175.
- 1222. Barchi, Jr., J. J.; Marquez, V. E.; Driscoll, J. S.; Ford, Jr., H.; Mitsuya, H.; Shirasaka, T.; Aoki, S.; Kelley, J. A. J. Med. Chem. 1991, **34**, 1647.
- 1223. Mansuri, M. M.; Krishnan, B.; Martin, J. C. Tetrahedron Lett. 1991, **32**, 1287.
- 1224. McGee, D. P. C.; Martin, J. C.; Smee, D. F.; Verheyden, J. P. H. Nucleosides & Nucleotides 1990, **9**, 815.
- 1225. Thomas, H. J.; Tiwari, K. N.; Clayton, S. J.; Secrist III, J. A.; Montgomery, J. A. Nucleosides & Nucleotides 1994, **13**, 309.
- 1226. Nesnow, S.; Heidelberger, C. J. Heterocycl. Chem. 1975, 12, 941.
- 1227. Bubbar, G. L.; Gupta, V. S. Can. J. Chem. 1970, 48, 3147.
- 1228. Hijazi, A.; Pfleiderer, W. Nucleosides & Nucleotides 1984, 3, 549.
- 1229. Durr, G. J.; Hammond, S. J. Heterocycl. Chem. 1970, 7, 743.
- 1230. Durr, G. J.; Keiser, J. F.; Ierardi III, P. A. J. Heterocycl. Chem. 1967, 4,

291.

- 1231. Stevens, C. L.; Blumbergs, P. J. Org. Chem. 1965, **30**, 2723.
- 1232. Ishibashi, K.; Ishiguro, S.; Komaki, R. DE 2834698, 1979 [Chem. Abstr. 1979, **91**, 20334u].
- 1233. Sakurai, K.; Aoyagi, S.; Toyofuku, H.; Ohki, M.; Yoshizawa, T.; Kuroda, T. Chem. Pharm. Bull. 1978, **26**, 3565.
- 1234. Schramm, G.; Lunzmann, G. FR 1569465, 1969 [Chem. Abstr. 1970, **72**, 111786s].
- 1235. Andersen, L.; Lau, J.; Pedersen, E. B. Chem. Scr. 1988, 28, 307.
- 1236. Krasavina, L. S.; Turchina, R. P.; Vigdorchik, M. M.; Turchin, K. F.; Akhvlediani, R. N.; Suvorov, N. N. Zh. Org. Khim. 1988, **24**, 24 [Chem. Abstr. 1989, **111**, 39722x].
- 1237. Matsumoto, H.; Kaneko, C.; Yamada, K.; Takeuchi, T.; Mori, T.; Mizuno, Y. Chem. Pharm. Bull. 1988, **36**, 1153.
- 1238. Golankiewicz, B.; Ostrowski, T.; Boryski, J.; De Clercq, E. J. Chem. Soc., Perkin Trans. 1 1991, 589.
- 1239. An, S.-H.; Bobek, M. Tetrahedron Lett. 1986, 27, 3219.
- 1240. García-López, T.; Herranz, R.; Andrés, J. I. Eur. J. Med. Chem. Chim. Ther. 1984, **19**, 187.
- 1241. Leonard, N. J.; Laursen, R. A. Biochemistry 1965, 4, 354.
- 1242. Davoll, J.; Brown, G. B. J. Am. Chem. Soc. 1951, 73, 5781.
- 1243. Leonard, N. J.; Laursen, R. A. J. Am. Chem. Soc. 1963, 85, 2026.
- 1244. Southon, I. W.; Pfleiderer, W. Chem. Ber. 1978, 111, 2571.
- 1245. Montgomery, J. A.; Thomas, H. J. J. Am. Chem. Soc. 1965, 87, 5442.
- 1246. Watanabe, K. A.; Chu, C. K.; Fox, J. J. EP 219829, 1987 [Chem. Abstr. 1987, **107**, 59409w].
- 1247. Yamaoka, N.; Aso, K.; Matsuda, K. J. Org. Chem. 1965, 30, 149.
- 1248. Muraoka, M.; Takada, A.; Ueda, T. Chem. Pharm. Bull. 1970, 18, 261.
- 1249. Rogers, G. T.; Ulbricht, T. L. V. J. Chem. Soc. (C) 1970, 1109.
- 1250. Letham, D- S.; Wilson, M. M.; Parker, C. W.; Jenkins, I. D.; MacLeod, J. K.; Summons, R. E. Biochim. Biophys. Acta 1975, **399**, 61.
- 1251. Cowley, D. E.; Duke, C. C.; Liepa, A. J.; MacLeod, J. K.; Letham, D. S. Aust. J. Chem. 1978, **31**, 1095.
- 1252. Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1979, 18, 707.
- 1253. McGee, D. P. C.; Martin, J. C.; Verheyden, J. P. H. Synth. Commun. 1988, **18**, 1651.
- 1254. Gauri, K. K.; Pflughaupt, K.-W.; Müller, R. Z. Naturforsch. 1969, 24 b ,

833.

- 1255. Szabolcs, A.; Sagi, J.; Otvos, L. J. Carbohydr. Nucleosides, Nucleotides 1975, **2**, 197.
- 1256. Gauri, K. K. DE 1935379, 1970 [Chem. Abstr. 1970, 73, 15179w].
- 1257. Pischel, H.; Wagner, G. Arch. Pharm.(Weinheim) 1969, 302, 213.
- 1258. Konno, K.; Hayano, K.; Shirahama, H.; Saito, H.; Matsumoto, T. Tetrahedron 1982, **38**, 3281.
- 1259. Brossmer, R.; Röhm, E. Hoppe-Seyler's Z. Physiol. Chem. 1967, **348**, 1431.
- 1260. Prystas, M.; Sorm, F. Collect. Czech. Chem. Commun. 1966, **31**, 3990.
- 1261. Capaldi, D. C.; Eleuteri, A.; Chen, Q.; Schinazi, R. F. Nucleosides & Nucleotides 1997, **16**, 403.
- 1262. Mertes, M. P.; Saheb, S. E.; Miller, D. J. Med. Chem. 1966, 9, 876.
- 1263. Keller, F.; Bunker, J. E.; Brown, L. H. J. Org. Chem. 1966, **31**, 3840.
- 1264. Jhingan, A. K.; Meehan, T. Synth. Commun. 1992, 22, 3129.
- 1265. Ueda, T.; Tanaka, H. Chem. Pharm. Bull. 1970, 18, 1491.
- 1266. Ueda, T.; Nishino, H. J. Am. Chem. Soc. 1968, 90, 1678.
- 1267. Prystas, M.; Sorm, F. Collect. Czech. Chem. Commun. 1964, **29**, 2956.
- 1268. Prystas, M.; Sorm, F. Collect. Czech. Chem. Commun. 1966, **31**, 1053.
- 1269. Lee, H.-J.; Wigler, P. W. Biochemistry 1968, 7, 1427.
- 1270. Camarasa, M.-J.; Walker, R. T.; Jones, A. S. Nucleosides & Nucleotides 1988, **7**, 181.
- 1271. Ducrocq, C.; Bisagni, E.; Lhoste, J.-M.; Mispelter, J.; Defaye, J. Tetrahedron 1976, **32**, 773.
- 1272. Nair, V.; Buenger, G. S.; Leonard, N. J.; Balzarini, J.; De Clercq, E. J. Chem. Soc., Chem. Commun. 1991, 1650.
- 1273. Pal, B. C. J. Org. Chem. 1971, 36, 3026.
- 1274. Keller, F.; Bunker, J. E.; Tyrrill, A. R. J. Med. Chem. 1967, **10**, 979.
- 1275. Jenkins, S. R.; Arison, B.; Walton, E. J. Org. Chem. 1968, 33, 2490.
- 1276. Chu, C. K.; Suh, J.; Cutler, H. G. J. Heterocycl. Chem. 1986, 23, 1777.
- 1277. Rao, D. R.; Lerner, L. M. J. Org. Chem. 1972, 37, 3741.
- 1278. Damianos, N.; Galons, H.; Miocque, M.; Quero, A. M.; Cotte, J. Pharm. Weekbl. Sci. Ed. 1989, **11**, Suppl. C, C3.

- 1279. Hasan, A.; Srivastava, P. C. J. Med. Chem. 1992, 35, 1435.
- 1280. Lazrek, H. B.; Taourirte, M.; Barascut, J.-L.; Imbach, J.-L. Nucleosides & Nucleotides 1991, **10**, 1285.
- 1281. Pudlo, J. S.; Saxena, N. K.; Nassiri, M. R.; Turk, S. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1988, **31**, 2086.
- 1282. Saxena, N. K.; Hagenow, B. M.; Genzlinger, G.; Turk, S. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1988, **31**, 1501.
- 1283. Gupta, P. K.; Nassiri, M. R.; Coleman, L. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1989, **32**, 1420.
- 1284. Robins, M. J.; Hatfield, P. W. Can. J. Chem. 1982, **60**, 547.
- 1285. Saxena, N. K.; Coleman, L. A.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1990, **33**, 1980.
- 1286. Seela, F.; Gumbiowski, R. Helv. Chim. Acta 1991, 74, 1048.
- 1287. Seela, F.; Bourgeois, W.; Muth, H.-P.; Rosemeyer, H. Heterocycles 1989, **29**, 2193.
- 1288. Seela, F.; Muth, H.-P.; Röling, A. Helv. Chim. Acta 1991, 74, 554.
- 1289. Seela, F.; Rosemeyer, H.; Fischer, S. Helv. Chim. Acta 1990, **73**, 1602.
- 1290. Seela, F.; Gumbiowski, R. Liebigs Ann. Chem. 1992, 679.
- 1291. Seela, F.; Rosemeyer, H.; Gumbiowski, R.; Mersmann, K.; Muth, H.-P.; Röling, A. Nucleosides & Nucleotides 1991, **10**, 409.
- 1292. Seela, F.; Winter, H.; Möller, M. Helv. Chim. Acta 1993, 76, 1450.
- 1293. Seela, F.; Mersmann, K. Helv. Chim. Acta 1993, 76, 2184.
- 1294. Ozaki, S.; Watanabe, Y.; Hoshiko, T.; Fujisawa, H.; Uemura, A.; Ohrai, K. Nucleic Acids Res., Symp. Ser. 15 1984, 33.
- 1295. Eid, M. M.; Addel-Hady, S. A.; Ali, H. A. W. Arch. Pharm. (Weinheim) 1990, **323**, 243.
- 1296. Ramasamy, K.; Robins, R. K.; Revankar, G. R. Nucleosides & Nucleotides 1988, **7**, 385.
- 1297. Revankar, G. R.; Robins, R. K. Nucleosides & Nucleotides 1989, 8, 709.
- 1298. Reitz, A. B.; Rebarchak, M. C. Nucleosides & Nucleotides 1992, **11**, 1115.
- 1299. Ramasamy, K.; Joshi, R. V.; Robins, R. K. Revankar, G. R. J. Chem. Soc., Perkin Trans. 1 1989, 2375.
- 1300. Rosemeyer, H.; Seela, F. Helv. Chim. Acta 1988, **71**, 1573.
- 1301. Seela, F.; Soulimane, T., Mersmann, K.; Jürgens, T. Helv. Chim. Acta 1990, **73**, 1879.
- 1302. Girgis, N. S.; Robins, R. K.; Cottam, H. B. J. Heterocycl. Chem. 1990, 27, 171.

- 1303. Sanghvi, Y. S.; Larson, S. B.; Willis, R. C.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1989, **32**, 945.
- 1304. Ramasamy, K.; Imamura, N.; Robins, R. K.; Revankar, G. R. Tetrahedron Lett. 1987, **28**, 5107.
- 1305. Motawia, M. S.; Pedersen, E. B. Synthesis 1988, 797.
- 1306. Buchanan, J. G.; Stoddart, J.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1994, 1417.
- 1307. Buchanan, J. G.; Stoddart, J.; Wightman, R. H. J. Chem. Soc., Chem. Commun. 1989, 823.
- 1308. Pudlo, J. S.; Nassiri, M. R.; Kern, E. R.; Wotring, L. L. Drach, J. C.; Townsend, L. B. J. Med. Chem. 1990, **33**, 1984.
- 1309. Gupta, P. K.; Daunert, S.; Nassiri, M. R.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1989, **32**, 402.
- 1310. Chu, S.-H.; Chen, Z.-H.; Savarese, T. M.; Nakamura, C. E.; Parks, Jr., R. E.; Abushanab, E. Nucleosides & Nucleotides 1989, **8**, 829.
- 1311. Chou, T.-S.; Grossman, C. S.; Hertel, L. W.; Holmes, R. E.; Jones, C. D.; Mabry, T. E. EP 577304, 1994 [Chem. Abstr. 1994, **121**, 83888m].
- 1312. Hodge, R. P.; Brush, C. K.; Harris, C. M.; Harris, T. M. J. Org. Chem. 1991, **56**, 1553.
- 1313. Wu, J.-C.; Bazin, H.; Chattopadhyaya, J. Tetrahedron 1987, 43, 2355.
- 1314. Pathak, T.; Bazin, H.; Chattopadhyaya, J. Tetrahedron 1986, **42**, 5427.
- 1315. Revankar, G. R.; Ramasamy, K.; Robins, R. K. Nucleosides & Nucleotides 1987, 6, 261.
- 1316. Ramasamy, K.; Robins, R. K.; Revankar, G. R. Tetrahedron 1986, **42**, 5869.
- 1317. Girgis, N. S.; Cottam, H. B.; Larson, S. B.; Robins, R. K. Nucleic Acids Res. 1987, **15**, 1217.
- 1318. Acevedo, O. L.; Andrews, R. S.; Cook, P. D. Nucleosides & Nucleotides 1993, **12**, 403.
- 1319. Griffin, L. C.; Kiessling, L. L.; Beal, P. A.; Gillespie, P.; Dervan, P. B. J. Am. Chem. Soc. 1992, **114**, 7976.
- 1320. Kazimierczuk, Z.; Seela, F. Liebigs Ann. Chem. 1991, 695.
- 1321. Ewing, D. F.; Holý, A.; Votruba, I.; Humble, R. W.; Mackenzie, G.; Hewedi, F.; Shaw, G. Carbohydr. Res. 1991, **216**, 109.
- 1322. Revankar, G. R.; Gupta, P. K.; Adams, A. D.; Dalley, N. K.; McKernan, P. A.; Cook, P. D.; Canonico, P. G.; Robins, R. K. J. Med. Chem. 1984, **27**, 1389.

- 1323. Ramesh, K.; Panzica, R. P. J. Chem. Soc., Perkin Trans. 1 1989, 1769.
- 1324. Gupta, P. K.; Robins, R. K.; Revankar, G. R. Nucleic Acids Res. 1985, 13, 5341.
- 1325. Gupta, P. K.; Dalley, N. K.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1986, **23**, 59.
- 1326. Oertel, F.; Winter, H.; Kazimierczuk, Z.; Vilpo, J. A.; Richter, P.; Seela, F. Liebigs Ann. Chem. 1992, 1165.
- 1327. Sanghvi, Y. S.; Hanna, N. B.; Larson, S. B.; Robins, R. K.; Revankar, G. R. Nucleosides & Nucleotides 1987, **6**, 761.
- 1328. Hanna, N. B.; Dimitrijevich, S. D.; Larson, S. B.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1988, **25**, 1857.
- 1329. Michael, J.; Larson, S. B.; Vaghefi, M. M.; Robins, R. K. J. Heterocycl. Chem. 1990, **27**, 1063.
- 1330. Seela, F.; Bindig, U. Liebigs Ann. Chem. 1989, 895.
- 1331. Marcus, T. E.; Gundy, A.; Levenson, C. H.; Meyer, Jr., R. B. J. Med. Chem. 1988, **31**, 1575.
- 1332. Girgis, N. S.; Cottam, H. B.; Robins, R. K. J. Heterocycl. Chem. 1988, **25**, 361.
- 1333. Coleman, R. S.; Dong, Y.; Arthur, J. C. Tetrahedron Lett. 1993, **34**, 6867.
- 1334. Seela, F.; Bourgeois, W. Helv. Chim. Acta 1991, 74, 315.
- 1335. Kazimierczuk, Z.; Stolarski, R.; Shugar, D. Z. Naturforsch. 1985, **40c** , 715.
- 1336. Seela, F.; Bourgeois, W. Synthesis 1989, 912.
- 1337. Seela, F.; Bourgeois, W. Synthesis 1990, 94.
- 1338. Seela, F.; Bourgeois, W. Synthesis 1988, 938.
- 1339. Seela, F.; Muth, H.-P.; Bindig, U. Synthesis 1988, 670.
- 1340. Seela, F.; Kaiser, K.; Bindig, U. Helv. Chim. Acta 1989, 72, 868.
- 1341. Seela, F.; Steker, H.; Driller, H.; Bindig, U. Liebigs Ann. Chem. 1987, 15.
- 1342. Cottam, H. B.; Kazimierczuk, Z.; Geary, S.; McKernan, P. A.; Revankar, G. R.; Robins, R. K. J. Med. Chem. 1985, 28, 1461.
- 1343. Ramasamy, K.; Imamura, N.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1988, **25**, 1893.
- 1344. Seela, F.; Driller, H.; Steker, H. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, **Vol.4**, p. 302.
- 1345. Seela, F.; Driller, H.; Liman, U. Liebigs Ann. Chem. 1985, 312.
- 1346. Winkeler, H.-D.; Seela, F. J. Org. Chem. 1983, 48, 3119.

- 1347. Cocuzza, A. J. Tetrahedron Lett. 1988, 29, 4061.
- 1348. Gupta, P. K.; Vittori, S.; Townsend, L. B. Nucleosides & Nucleotides 1990, **9**, 35.
- 1349. Ramasamy, K.; Robins, R. K.; Revankar, G. R. J. Chem. Soc., Chem. Commun. 1989, 560.
- 1350. Winkeler, H.-D.; Seela, F. Liebigs Ann. Chem. 1984, 708.
- 1351. Garaeva, L. D.; Yartseva, I. V.; Melnik, S. Ya. Nucleosides & Nucleotides 1991, **10**, 1295.
- 1352. Seela, F.; Kretschmer, U. J. Heterocycl. Chem. 1990, 27, 479.
- 1353. Girgis, N. S.; Cottam, H. B.; Larson, S. B.; Robins, R. K. J. Heterocycl. Chem. 1987, **24**, 821.
- 1354. Sanghvi, Y. S.; Larson, S. B.; Robins, R. K.; Revankar, G. R. Nucleosides & Nucleotides 1989, **8**, 887.
- 1355. Serafinowski, P. Synthesis 1990, 757.
- 1356. Seela, F.; Grein, T.; Samnick, S. Helv. Chim. Acta 1992, 75, 1639.
- 1357. Cristalli, G.; Vittori, S.; Eleuteri, A.; Grifantini, M.; Volpini, R.; Lupidi, G.; Capolongo, L.; Pesenti, E. J. Med. Chem. 1991, 34, 2226.
- 1358. Seela, F.; Steker, H. J. Chem. Soc., Perkin Trans. 1 1985, 2573.
- 1359. Seela, F.; Menkhoff, S. Liebigs Ann. Chem. 1986, 1213.
- 1360. Seela, F.; Steker, H. Helv. Chim. Acta 1986, 69, 1602.
- 1361. Hildebrand, C.; Wright, G. E. J. Org. Chem. 1992, **57**, 1808.
- 1362. Wright, G. E.; Hildebrand, C.; Freese, S.; Dudycz, L. W.; Kazimierczuk, Z. J. Org. Chem. 1987, **52**, 4617.
- 1363. Focher, F.; Hildebrand, C.; Freese, S.; Ciarrocchi, G.; Noonan, T.; Sangalli, S.; Brown, N.; Spadari, S.; Wright, G. J. Med. Chem. 1988, 31, 1496.
- 1364. Wright, G. E.; Dudycz, L. W.; Kazimierczuk, Z.; Brown, N. C.; Khan, N. N. J. Med. Chem. 1987, **30**, 109.
- 1365. Kazimierczuk, Z.; Vilpo, J.; Hildebrand, C.; Wright, G. J. Med. Chem. 1990, **33**, 1683.
- 1366. Kawakami, H.; Matsushita, H.; Yoshikoshi, H.; Itoh, K.; Naoi, Y. US 5262531, 1993; EP 0350292, 1989 [Chem. Abstr. 1990, **113**, 6744u].
- 1367. Kondo, K.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. Tetrahedron 1992, **48**, 7145.
- 1368. Seela, F.; Bindig, U.; Driller, H.; Herdering, W.; Kaiser, K.; Kehne, A.; Rosemeyer, H.; Steker, H. Nucleosides & Nucleotides 1987, **6**, 11.
- 1369. Rosemeyer, H.; Seela, F. J. Org. Chem. 1987, 52, 5136.
- 1370. Franchetti, P.; Cappellacci, L.; Grifantini, M.; Lupidi, G.; Nocentini, G.; Barzi, A. Nucleosides & Nucleotides 1992, **11**, 1059.

- 1371. Seela, F.; Lampe, S. Helv. Chim. Acta 1993, 76, 2388.
- 1372. Wang, Y.; Fleet, G. W. J.; Wilson, F. X.; Storer, R.; Myers, P. L.; Wallis, C. J.; Doherty, O.; Watkin, D. J.; Vogt, K.; Witty, D. R.; Peach, J. M. Tetrahedron Lett. 1991, **32**, 1675.
- 1373. Meade, E. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1993, **36**, 3834.
- 1374. Meade, E. A.; Townsend, L. B. Bioorg. Med. Chem. Lett. 1991, 1, 111.
- 1375. Sanghvi, Y. S.; Larson, S. B.; Robins, R. K.; Revankar, G. R.; Gupta, P. K.; George, R. D.; Dalley, N. K. J. Heterocycl. Chem. 1988, **25**, 623.
- 1376. Cristalli, G.; Vittori, S.; Eleuteri, A.; Volpini, R.; Cola, D.; Camaioni, E.; Gariboldi, P. V.; Lupidi, G. Nucleosides & Nucleotides 1993, **12**, 39.
- 1377. Cristalli, G.; Franchetti, P.; Grifantini, M.; Nocentini, G.; Vittori, S. J. Med. Chem. 1989, **32**, 1463.
- 1378. Seela, F.; Winkeler, H.-D.; Ott, J.; Tran-Thi, Q.-H.; Hasselmann, D.; Franzen, D.; Bussmann, W. *Nucleosides, Nucleotides, and Their Biological Applications*; Academic: New York; 1983; p. 181.
- 1379. Seela, F.; Lüpke, U.; Hasselmann, D. Chem. Ber. 1980, **113**, 2808.
- 1380. Ramasamy, K.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1988, **25**, 1043.
- 1381. Hanna, N. B.; Ramasamy, K., Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1988, **25**, 1899.
- 1382. Seela, F.; Bourgeois, W.; Jürgens, T. Nucleosides & Nucleotides 1989, **8**, 1089.
- 1383. Seela, F.; Winkeler, H.-D. In *Nucleic Acid Chemistry*; Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York; 1991, **Vol.4**, p. 209.
- 1384. Okamoto, K; Goto, T. JP 61207400 1986 [Chem. Abstr. 1987, **106**, 156826s].